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Abstract

Just like traditional livestock, farmed insects harbour genetic variation and can be selectively bred to optimise
traits of interest. This BugBook article presents a comprehensive overview of how genetics can contribute to
improving insect production for food and feed. Molecular genetics and genomics approaches for generating the data
essential for understanding species biology are presented, as well as their implementation in dedicated selective
breeding programmes, and options for health and quality control of mass rearing operations. To harness the
breeding potential of farmed insects, methods to investigate population genetic diversity and structure through
population and evolutionary genetic principles are provided as well as tools for monitoring genetic variation and
assessing genetic consequences of captive breeding to adequately manage populations. An overview is given on
quantitative genetics of farmed insects, how to record phenotypes and pedigrees, estimate genetic parameters,
and design optimal breeding programmes. Lastly, the role of functional genetics in insect production is discussed,
the biological link between DNA and phenotypic variation, and key to effectively apply genetic improvement
strategies through selective breeding. This article identifies knowledge gaps in insect breeding and provides
recommendations for application and future research. Major challenges in the field of genetics of farmed insects
include how to phenotype large numbers of individual insects over generations; how environmental factors affect
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trait expression, including interaction with genetics; and how to translate results from laboratory settings to mass
rearing environments. This article will contribute to further develop the area of genetics of insects for food and feed.
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1 Introduction

Insects have long been a traditional component of
the human diet in many regions worldwide, particu-
larly in Africa, Asia, and Central and South America
(Chakravarthy et al., 2016; Omuse et al., 2024; van Huis,
2013). Recently, there has also been a rapidly grow-
ing interest in insect production for animal feed and
human food in the Western world (van Huis et al., 2021,
2025). Whereas traditional edible insects were predomi-
nantly beetle larvae, caterpillars, grasshoppers, crickets,
and termites (Chakravarthy et al., 2016), novel farmed
insects are mostly flies and Tenebrionid beetles. Adults
or larvae are either harvested whole or processed for
ingredients, such as purified proteins and fats for human
food (Bellezza Oddon et al., 2025; Dunkel and Payne,
2016; Hazarika and Kalita, 2023) and animal feed (Heuel
et al., 2022b; Stadtlander et al., 2017; van Huis et al.,
2025). Nutritional profiles of insects are favourable for
omnivorous and carnivorous diets (Heuel et al., 2022a;
Makkar et al., 2014) and feeding live insects could be a
veritable enrichment component in animal production
(Bellezza Oddon et al., 2021). A smaller focus lies on the
production of insect components for technical applica-
tions (Rehman et al, 2023), for cosmetics and paints
(Franco et al., 2022; Triunfo et al., 2021), and the agricul-
tural use of insect frass (Barragan-Fonseca et al., 2022;
Poveda, 2021).

The potential for reducing ecological footprints of
food chains, for instance, by replacing barely sustain-
able feed components like soy and fishmeal with insect-
based products in livestock and aquaculture production
(Heuel et al., 2021; Hua, 2021) is widely acknowledged
(e.g. Smetana et al., 2021; van Huis, 2013; van Huis and
Oonincx, 2017). Yet, the field faces diverse challenges,
e.g. regulatory restrictions in several regions compli-
cate large-scale production (Liahteenméki-Uutela et al.,
2021), and food and feed safety issues (Heuel et al,
2023; Wynants et al., 2019) deriving from waste stream
bioconversion (Bosch et al., 2019; Ewusie et al., 2018;
Gold et al., 2018). Other questions concern insect nutri-
tional requirements (Oonincx et al.,, 2025), infections

and disease vectoring (Joosten et al., 2020; Vogel et al.,
2022), reproduction and welfare under mass rearing
conditions (Tomberlin et al., 2025) and data analyses
(Smetana et al., 2025). As insect production can only
be considered an emerging industry at this point, eco-
nomic concerns are at the forefront of the stakeholders’
considerations. Optimisation of production processes
can be approached along various lines, including the
technical production facilities and environmental con-
ditions (Coudron et al., 2025; Deruytter et al., 2025), but
also genetic improvement through selective breeding.
Only very recently is the sector becoming aware of the
pervasive and palpable impact of the genetic makeup of
insects farmed for food and feed and opportunities for
breeding to support the sector’s maturation comparable
to the state-of-the-art in traditional livestock (Eriksson
and Picard, 2021; Hansen et al., 2024b; Jensen et al., 2017;
Sellem et al., 2024).

For decades, livestock populations have been tailored
to the requirements of their specific production system.
Animal breeding has grown into a highly specialised
and complex research field covering sophisticated phe-
notyping and performance testing systems, statistical
models for genetic evaluation and prediction in various
species, and the integration of genetics and economics
into robust breeding programme designs (e.g. Gianola
and Rosa, 2015; Miglior et al., 2017; Pérez-Enciso and
Steibel, 2021). However, for farmed insects, and espe-
cially insects for food and feed, systematic selective
breeding is still in its infancy, and its establishment will
require a great deal of optimisation. Insect production
systems have unique biological and operational char-
acteristics that make the task of genetic improvement
particularly challenging. These include the existence
of multiple life stages (egg, larva or nymph, pupa, and
adult), usually short lifespans, small size of individuals,
complex reproductive behaviour and the sheer scale of
populations leading to a very poor and/or unpredictable
representativeness of a single individual, which com-
plicates the evaluation of individual phenotypes. These
challenges demand the development of new paradigms,
potentially inspired by aquaculture breeding, where
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similar complex systems exist. Adapting selective breed-
ing to insect production also requires amalgamating the
different fields of farmed insect genetics to align priori-
ties and achieve a common goal. Researchers and insect
breeders currently involved in the field of farmed insect
genetics come from a range of backgrounds, each bring-
ing unique perspectives, methodologies, and areas of
expertise, which, while enriching, can also create silos
and challenges in communication and integration.

The necessary harmonisation of breeding pro-
grammes and goals faces the challenge of the diver-
sity of insect species produced for food and feed at
present and in the future. Among more than one mil-
lion insect species described (and many more esti-
mated) (Stork, 2018), numerous are highly promising
to explore as food, feed, and technical products (van
Huis, 2020). However, the number of insect species
used for production purposes is currently restricted
to a few dozen (Francuski and Beukeboom, 2020; van
Huis and Tomberlin, 2017). For most primary species
there is a striking lack of knowledge on their evolu-
tionary history and species-wide population genetic
structure (up to complete ignorance of the existence
of wild congeners of some production insects). This
BugBook article collates available insights for four the-
matic sections — molecular, evolutionary, quantitative
and functional genetics — for the prominent (tradi-
tional and novel) insects for food and feed. Exam-
ples include the black soldier fly (BSF) (Hermetia illu-
cens L.; Diptera: Stratiomyidae), the house fly (Musca
domestica L.; Diptera: Muscidae), the yellow mealworm
(Tenebrio molitor L.; Coleoptera: Tenebrionidae), the
lesser mealworm (Alphitobius diaperinus L.; Coleoptera:
Tenebrionidae), the house, the tropical house, and the
Mediterranean field cricket (Acheta domesticus L., Gryl-
lodes sigillatus L., and Gryllus bimaculatus De Geer;
Orthoptera: Gryllidae), as well as migratory and desert
locusts (Locusta migratoria L. and Schistocerca gre-
garia Forsskal; Orthoptera: Acrididae). We complement
the conceptual framework and relevant approaches
for genetics research by several comparatively more
detailed or advanced insect examples. These include
model insects in the academic field, such as the vine-
gar fly (Drosophila melanogaster L.; Diptera: Drosophil-
idae), the parasitoid wasp Nasonia vitripennis (Walker;
Hymenoptera: Pteromalidae) and the red flour bee-
tle (Tribolium castaneum L.; Coleoptera: Tenebrion-
idae), insects farmed for other purposes than food
and feed, such as the honeybee (Apis mellifera L.;
Hymenoptera: Apidae) and the silkworm (Bombyx mori
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L.; Lepidoptera: Bombycidae), but also pest and biocon-
trol insects.

In this BugBook article, we provide comprehensive
overview of genetic principles, processes and tools as
well as recommendations for further genetic studies and
applications to advance the field of insects for food and
feed. We aim to unify knowledge and foster cooperation
to accelerate progress in insect breeding programmes
and address the unique challenges of insect produc-
tion systems, ultimately advancing sustainability and
productivity. Throughout thematic Sections 2-5 (Fig-
ure 1), we review the wider field of insect genetics, rang-
ing from molecular methods commonly used for insect
genetic research, to quantitative genetic approaches, to
selection of breeding candidates with superior traits.
New approaches and methodologies, as well as those
established in animal breeding, are critically consid-
ered for their application in academic research and the
insect industry, along with the identification of spe-
cific technological demands, challenges and opportuni-
ties. We outline central concepts of population genetics
and evaluations of genetic diversity and dynamics of
genetic variation in space and time, which is crucial
for deciphering hierarchical metapopulation structure
across field and production contexts, as well as demo-
graphic patterns relevant for inferring domestication
processes and conservation strategies. We also discuss
the deep knowledge of population structure and evolu-
tionary history required to make informed selection and
crossing decisions and effectively manage farmed insect
populations in a sustainable manner, as well as biolog-
ical relationships between genetic variation and func-
tional phenotypic variation. Finally, we discuss concep-
tual links between the topic areas (Figure 1) to identify
interdisciplinary challenges and synergies, and make
concluding recommendations for future directions to
implement progress in the field of farmed insect genet-
ics.

2 Molecular genetics

A comprehensive understanding of the basic biology
and evolutionary history of any given farmed insect
is key to inform and improve selective breeding pro-
grammes, and ensure high health and quality standards
in mass rearing operations. This section describes var-
ious molecular genetics and genomics analyses, selec-
tion and preparation of samples, and the optimal
DNA/RNA extraction methods for addressing specific
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FIGURE 1  Graphical index contextually capturing thematic Sections 2-5.
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for food and feed.

questions from barely equipped applied research to
large-scale bioinformatics endeavours.

Genotyping methods

The polymerase chain reaction (PCR) is a fundamen-
tal technique in modern molecular biology. Delineated
by specific primers, it amplifies a target region in the
nuclear or mitochondrial genome. PCR facilitates the
study of genomic regions from a limited amount of
starting material, enabling genetic analysis of virtually
any organism without constraints on the sampling envi-
ronment (Freeland, 2020; Rowe et al., 2017). Genotyp-
ing techniques can be categorised into PCR-based and
non-PCR-based methods. Within each category, vari-
ous assays can be performed on mitochondrial DNA
(mtDNA), nuclear DNA, or messenger RNA (mRNA) that
serves as the intermediate molecule between DNA and
proteins. These methods range from simple techniques,
such as elucidating evolutionary relationships through
PCR-based amplification followed by Sanger sequenc-
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Potential bidirectionally interpretable and mutually non-

exclusive research pathways to address molecular genetics in insects

ing, to the assessment of total genome diversity, vari-
ability, and structural variation through whole genome
sequencing (Figure 2) (Holliday et al., 2019; Hoy, 2019).

Mitochondrial barcoding

One of the most common, and relatively inexpensive,
methods of genotyping is to sequence different regions
of mtDNA. The small, circular, double-stranded mater-
nally inherited DNA molecules (approx. 16 kb) are abun-
dant (many copies per cell), stable, suitable for non-
invasive sampling, and easily purified for genetic anal-
yses. mtDNA contains coding regions for highly con-
served, essential genes involved in energy metabolism
(Hwang and Kim, 1999; Wallace and Chalkia, 2013)
allowing the design of PCR primers that work univer-
sally across entire phyla such as arthropods. Conse-
quently, mtDNA remains the most accessible genetic
marker for assessing phylogenetic and phylogeographic
relationships (Dowling and Wolff, 2023; Wu et al., 2022).
Accurate classification of an organism’s evolutionary



origin is crucial, as unresolved taxonomic uncertainties,
like unrecognised sibling taxa within a cryptic species
complex, would impede the definition of management
units necessary for tailored breeding in insect livestock
(Section 4).

Typically, short fragments of several hundred base
pairs comprising individual genes are sequenced rather
than entire mitogenomes, such as the commonly used
‘barcode’ region (Pentinsaari et al., 2016), which encom-
passes most of the cytochrome oxidase I (COI). Ana-
lysing additional genes within the mitochondria does
not always provide significant advantages due to the
linked nature of the loci (Sandrock et al., 2011b) even
though assembling mitogenomes of farmed insects
is affordable (Homchan et al., 2024; Yu et al, 2022).
Although COI barcoding is barely useful to address
intra-population variation, it can represent a minimal
approach to discriminate strains of different origin in
comparative studies, as demonstrated in the house fly
(Pastor et al., 2014). Further comparison with a compre-
hensive phylogeography, as available for the BSF and
so far capturing approximately 60 distinct COI hap-
lotypes worldwide (Guilliet et al, 2022; Khamis et al.,
2020; Nguyen et al., 2023; Pazmifio et al, 2023; Stahls
et al., 2020), is particularly meaningful in this context
(see Section 3: Mito-nuclear phylogeographic patterns).
Remarkably, BSF haplotypes exhibit divergences of up
to 4.9%, which may be indicative of a transition to
cryptic taxon delimitations (Hebert et al., 2003; Lavinia
et al., 2017), suggesting the need for further investiga-
tion (Generalovic et al., 2023). Based on few available
studies, divergence in the yellow mealworm remains
way shallower, merely reaching 2% (Song et al., 2022).
Importantly, all amplified and sequenced genes must be
verified as mitochondrial, and not pseudocopies present
in the nucleus of many insect species called nuclear
mitochondrial DNA segments (NUMTs). This is typically
verified via translation of the gene sequence (Hazkani-
Covo et al., 2010).

Microsatellites

Microsatellites, synonymously referred to as ‘simple se-
quence repeats (SSR)’ or ‘short tandem repeats (STR)),
are short DNA sequences of 2-6 bp that are repeated
few-to-many times. They tend to be widespread in
eukaryotic genomes and usually located within non-
coding parts such as intergenic or intronic regions.
Repetitive motifs experience comparatively high muta-
tion rates at evolutionary scales (Weber and Wong,
1993). Hence, their presumed neutral evolution allows
these markers to accumulate high allelic diversity, often
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comprising dozens of alleles per locus. Conversely,
microsatellites frequently reside in ‘junk’ DNA regions
which challenges designing primers within respective
flanking regions that are locus-specific and conserved
for universal intraspecific amplification. Microsatellites
have been and still are widely used for genetic profil-
ing since the 1990s, especially in forensics and paternity
testing (Butler, 2014), yet also for population genetics
(Section 3) and evolutionary ecology research (Brede et
al., 2006; Buellesbach et al., 2023; Sandrock et al., 2007).

Using previously established microsatellite markers
is particularly useful if standardised reference data
sets are openly accessed for subsequent cross-study
comparison. Microsatellites are for example available
for BSF (Kaya et al, 2021; Rhode et al.,, 2020). If no
published markers exist, the basic development of
new microsatellites can be inexpensively accomplished
by generating whole genome sequence reads. Using
available pipelines (e.g. msatcommander, (Faircloth,
2008)), reads can be screened for repetitive motifs
complemented by adequate primer design swiftly yield-
ing many new microsatellite markers (Abe and Pan-
nebakker, 2017). Next, establishing and validating a
robust microsatellite marker set involves screening for
meaningful polymorphisms as well as evaluating possi-
bly segregating “null alleles”. These are alleles for which
amplification fails due to polymorphisms in a given
primer binding region. Such drop out alleles are prob-
lematic, and their frequencies may vary among popu-
lations. Therefore, newly developed microsatellite loci
require a thorough population survey to assess the qual-
ity of the designed primers in their ability to amplify
across populations. If primer re-design is no option (e.g.
due to other amplification artefacts), candidate mark-
ers standing out because of null allele homozygotes
should be excluded from sets of routinely implemented
loci. Further, hypervariable as well as barely polymor-
phic loci both have their merits, depending on relative
scopes to resolve relatedness within and across popula-
tions (Section 3).

Microsatellite analysis basically uses conventional
PCR amplification. For convenience, multiple loci may
be co-amplified in multiplex PCR reactions, if anneal-
ing temperatures of individual primers allow or were
co-designed for that accordingly. It is imperative to label
the forward primers of markers that amplify sequences
of possibly overlapping fragment length using (up to
six) different fluorescent dyes, and purposive primer
design in the flanking regions ensures non-overlapping
ranges of finally amplified sequences when the same
dye is used. In this way, co-amplification of 5 to 8 loci
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is readily possible within in one reaction (Sandrock et
al., 2010) but combining up to 24 loci e.g. in human
genotyping kits is feasible (Williams et al., 2023). Fol-
lowing the amplification of polymorphic microsatellite
loci via PCR, allelic discrimination is performed based
on capillary electrophoresis in relation to an internal
size standard. This allows for the resolution of fragments
that differ by 1 nucleotide or more. Several software
tools exist to handle the raw data and visualise fluores-
cence signals that effectively capture fragment length
(e.g. GeneMapper (Thermo Fisher Scientific, Waltham,
MA, USA) or Geneious (Dotmatics, Boston, MA, USA)).
In diploid genotypes, the sizes of the fragments allow to
differentiate between homozygotes and heterozygotes,
i.e. sizes of the two alleles are either the same or dif-
ferent, respectively. Not to be generalised, amplification
of repetitive motifs can exhibit stutter signals, which
requires careful allele calling for some markers.
Alternatively, sequence-based microsatellite geno-
typing (SSRseq) combines next-generation sequencing
techniques with multiplex PCR amplified microsatellite
loci (Lepais et al., 2020; Zhan et al., 2017). Because this
yields direct access to allele sequences, up to 60 loci
can simultaneously be amplified. SSRseq also resolves
the issue of homoplasy, where alleles that are geno-
typed to the same size using electrophoresis represent
two alleles due to masked SNPs or indel variation. One
requirement of SSRseq is reference genome data, which
is currently available for many insects for food and
feed, including the BSF (Cai et al., 2024; Costagli et al.,
2024; Generalovic et al., 2021; Zhan et al., 2020); yel-
low mealworm (Eleftheriou et al., 2022a; Eriksson and
Picard, 2021; Kaur et al., 2023; Oppert et al., 2023); house
cricket (Dossey et al., 2023); house fly (Scott et al., 2014);
migratory locust (Wang et al., 2014); or can be newly
generated from low coverage genome sequences. By
means of efficient processing pipelines and automated
data analysis, this approach can be readily normalised
across laboratories to yield high-quality microsatellite
data, supplemented with SNP and indel variation, for
many individuals (Choi et al., 2022; Lepais et al., 2020).

Single nucleotide polymorphisms

Single nucleotide polymorphisms (SNPs) are alterna-
tive markers for genotyping. In contrast to the multi-
allelic nature of microsatellites, most SNPs are bi-
allellic. Each SNP locus therefore provides less infor-
mation per locus than a single microsatellite (e.g. Liu
et al., 2017), but SNPs have a much higher density in
the genome and readily extend into relevant coding
regions, making them more informative with regards
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to genome coverage and locus representation (Thala-
muthu et al,, 2005). Furthermore, as SNPs are mutation-
ally more stable, it makes them less prone to homoplasy
that might confound genetic analysis (Zimmerman et
al., 2020). With the recent technical ease of high-
throughput genotyping technologies, SNPs are becom-
ing the markers of choice in genomic applications,
such as QTL-mapping, genome-wide association studies
(GWAS), marker-assisted selection, genomic prediction,
and resolving evolutionary relationships (Sections 3 and
4).

Several methods exist for genotyping SNPs, the choice
of which depends on numbers of samples and SNPs
required. For genotyping a limited number of SNPs in
a limited number of samples, Sanger sequencing of PCR
amplified regions of up to 1000 base pairs long is most
often used (Hawkins, 2017). In contrast to fragment
analysis of microsatellites, Sanger sequencing of PCR
amplicons provides complete information (all polymor-
phisms as well as heterozygous sites). If only a few SNPs
need to be genotyped, for instance those known to be
linked to a phenotype from previous studies (Section
4), methods that directly target a specific SNP are more
useful. Of these, both TagMan probes and Kompeti-
tive Allele-Specific PCR (KASP) assays are frequently
used (He et al., 2014; Woodward, 2014). For genotyping
a single bi-allelic SNP, TagMan uses two allele-specific
probes labelled with different fluorescent dyes, each
hybridising to a different allele in quantitative PCR
(qPCR) also known as real-time PCR (RT-PCR) ampli-
fication (see Section 2: PCR-based RNA assays assays).
Alleles are then determined by measuring the intensity
of the fluorescent dyes as they bind to the template.
While sensitive and reliable, TagMan technology is lim-
ited by the use of the specialised allele-specific probes
(Woodward, 2014). Conversely, KASP uses unlabelled
allele-specific primers with a unique tail sequence that
binds to different fluorescent dyes, allowing the deter-
mination of genotypes based on end-point PCR prod-
ucts (He et al,, 2014). It is more cost-effective than Taq-
Man, and therefore suitable for high-throughput analy-
ses typically required by breeding programmes.

Genotyping a larger number of SNPs distributed
throughout the genome, particularly for GWAS, typi-
cally requires either next-generation sequencing (NGS)
methods (e.g. low-coverage Illumina sequencing (Lou
et al., 2021)), targeted enrichment strategies using a set
of DNA probes for the targeted SNPs (then sequenced
using Illumina technologies), or pre-made microarray
systems including required SNPs. Although the bioin-
formatics approaches differ between these methods,



all depend on genotypes being compared to reference
genomes. Due to the large sample sizes needed to as-
sociate specific traits with populations in GWAS, using
NGS can be both costly and time-consuming. While SNP
arrays are also expensive, they are generally more prac-
tical for such large-scale studies. Currently, there is only
one high density genotyping array dedicated to farmed
insects, which covers 679 205 SNPs and over 99% of the
yellow mealworm genome (Axiom® YNS_Moll).

There are also ‘in-between methods’ that focus on
sequencing only genome subsets, rather than the entire
genome. Examples include restriction-site associated
DNA sequencing (RADseq), which sequences only the
fragments near restriction enzyme sites, and exome
sequencing, which targets only the coding regions of the
genome (Zhang et al., 2024). Alternatively, very low cov-
erage sequencing of an entire population can be used,
or alternatively pooled sequencing (Pool-seq) (Donkpe-
gan et al, 2022; Gmel et al, 2023) for applications
that do not require individual genotype information.
While these methods are excellent for population dif-
ferentiation by leveraging existing nucleotide diversity
(Fuentes-Pardo and Ruzzante, 2017), they often lack the
resolution needed for trait associations and other indus-
trially important questions (i.e. GWAS). This is because
most complex traits are polygenic, with each gene typi-
cally having a low effect (Section 4), necessitating mas-
sive sample sizes to detect rare and often subtle signals
in the genome with clearly defined genotypes not typi-
cally generated from low coverage SNPs.

Finally, more advanced methods for understanding
genetic diversity and its correlation with phenotypes
increasingly rely on deep sequencing, typically applied
to a smaller number of samples. Pangenomics repre-
sents the next frontier, enabling not only the associ-
ation of nucleotide diversity across populations, but
also the assessment of the role of structural variants
in genome organisation and phenotypes (Tong et al,
2022). These methods require a substantial amount
of high-quality DNA, and in some cases, such as with
chromatin-capture techniques like Hi-C for scaffolding
(Yamaguchi et al,, 2021), fresh tissue is needed to cap-
ture subtle yet informative associations. Currently, both
PacBio and Nanopore sequencing technologies gener-
ate long reads (>10kb) that can detect smaller structural
variants, while Hi-C can capture long-range structural
variants such as inversions, insertions, and duplications
(Figure 2).

We end this section with the following recommenda-
tions. Next to basic COI barcoding, microsatellite geno-
typing is cheap, quick and reliable to characterise and
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monitor population genetic diversity indices or assign
individuals to genetic clusters or admixed ancestry to
inform experimental and breeding designs (Section 3).
As an extension, the future goal, however, is to vali-
date and implement high to medium density SNP arrays
when starting the selection scheme and subsequently
monitor generations in industrial breeding. SNP geno-
typing or sequencing is required to highlight interesting
SNPs, linked to traits of interest by means of GWAS, and
to design small density arrays or SNP panels (low-cost
SNP sequencing) aiming to convey a genomic selection
scheme (Section 4). SNP panels and the use of imputa-
tion, however, are sensitive to the reference population.
This can be problematic without long range information
on the presence of structural variants contributing to
the loss of amplification of alleles or haplotypic linkage
of various SNPs (Kapun et al., 2021).

Sample collection

Secure sampling storage

Reliable genotyping and genomic results necessitate
sampling and storage conditions tailored to the intend-
ed use of extracted materials. DNA can be extracted
from all insect stages, including hemi- and holometabo-
lous species. When collecting specimens for subsequent
molecular methods, their initial storage conditions, if
not being used immediately, are critical to downstream
success. The optimal storage option for any insect at any
stage is to flash freeze in liquid nitrogen and store at
-80 °C environment. The next most effective method
is to euthanise the insect as rapidly as possible (freez-
ing) and then store it in a nucleic acid storage solu-
tion (e.g. RNAlater or a similar chemical solution) or
>70% ethanol, preferably at lower temperatures (4 °C
or —20 °C). Ethanol dehydrates the specimens, effec-
tively neutralising the enzymatic activities that would
degrade nucleic acids; however, it is crucial that the
solution remain >70%. Thus, after 24-48 hours of stor-
age, it is important to replace the ethanol anew, given
that the original solution will be diluted with mois-
ture from the insects, and particularly larvae. Air-dried
or pinned specimens can be utilised for DNA extrac-
tions, but the DNA can be degraded, likely yielding
only small amplicons (Fong et al., 2023). While DNA
is constant across life stages, tissue and environmen-
tal conditions, mRNA is much more sensitive and more
volatile depending on the context. The expression of
genes depends on the exact conditions prior to sam-
pling. Some genes, e.g. heat shock genes, respond by up-
or down-regulation within minutes of changed environ-
mental conditions (Serensen et al., 2003). Furthermore,
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RNA is much faster degraded than DNA. Therefore, sam-
pling design is important for the samples to serve the
purpose of the study, and fast handling and storage
(preferably at -80 °C or in dedicated solutions designed
to preserve RNA) is crucial to ensure integrity of the
sample.

Choice of life stage and tissue

The choice of life stage and tissue type will also impact
downstream analyses. Vice versa, to pursue a certain
research question and successive methodological path-
ways, contingent upon accessible technology, investi-
gators ideally define specific targets, as schematically
illustrated in Figure 2. If generating extracts for indi-
vidual gene sequencing (e.g. mtDNA COI), then a very
small amount of DNA is needed. If NGS methods (PCR-
free) are desired, then a much higher concentration is
needed (>100 ng/ul). For example, approx. 50 yellow
mealworms eggs must be pooled to obtain between
20 and 50 ng/pl of DNA. This is an important factor
to consider when standardising DNA extraction proto-
cols. From larval, pupal, or adult stages, tissue quantity
is largely sufficient to obtain high DNA quantity; how-
ever, the tissue source plays a pivotal role for DNA qual-
ity and quantity when working with small amounts of
starting material. As larvae get larger, fat body tissue
becomes increasingly extensive throughout the body,
which results in lower quantity and often quality of
DNA due to the difficulty of separating lipids during the
extraction procedure. Adult tissue, specifically muscle
tissue, is an excellent tissue type, and should be con-
sidered whenever possible, especially for genome-wide
sequencing methods. It is necessary to use a DNA source
with sufficient cell density from which a non-negligible
quantity can be sampled without risks.

Design and timing

The sampling design for collecting insects is crucial
for accurately assessing genetic variation in population
studies, whether the focus is on wild or farmed popula-
tions (Meirmans, 2015). Representative sampling (tim-
ing of collection and numbers of individuals) avoids
bias, as well as inadvertently pooling subpopulations
that have different allele frequencies leading to misin-
terpretation of genetic structure (Section 3). This can
arise if samples are collected from different develop-
mental stages at the same time and place, or if samples
from nearby sites are pooled together. Additionally, spe-
cial care is needed in farmed populations where genetic
drift can become significant, particularly if batch pro-
duction involves discrete, non-overlapping generations.
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For Evolve and Resequencing studies (Section 4), recom-
mendations suggest sampling over enough generations
to detect selection, with simulations indicating that 10-
20 generations are often optimal. This allows for the
accumulation of genetic changes due to selection while
controlling for drift. Replication is also key in these stud-
ies, as it helps distinguish true selective responses from
random variation. Moreover, the strength of selection
should be carefully considered, as stronger selection
can lead to more detectable changes over fewer gener-
ations at the expense of an elevated risk of genetic drift
and hitch-hiking of genetically linked loci, while weaker
selection may require longer observation periods to dis-
cern its effects but with less drift due to higher effective
population size (see Section 3: Population differentia-
tion and its causes) and allow more recombination.

Non-destructive sampling

Current methods for DNA collection and extraction
from insects are destructive, as the most common tech-
niques macerate entire individuals (Figure 2) (Huanca-
Mamani et al., 2015). Indeed, two limiting factors in pro-
cessing non-destructive extractions remain; the limited
amount of extracted DNA derived from the small tissue
quantities and the effects on the insect that likely affects
either the phenotype of breeding candidates (see Sec-
tion 4: Phenotyping), and/or fitness. Few protocols have
been developed to extract insect DNA from frass (Kidd
et al., 2003) and exuviae (Kranzfelder et al., 2016), but
this method cannot identify individuals, resulting in a
‘population’ sample. This approach can be particularly
useful for insects at the larval stage, where large quanti-
ties of frass and exoskeleton sheds are produced. How-
ever, the quality of DNA suffers from degradation by
nucleases when collected in the field resulting in insuffi-
cient DNA quantity (Peng et al., 2018). High-quality DNA
was also extracted by sampling 2-3 mm? wings clips
from red flour beetles (Chaline et al., 2004), and honey-
bee queens, as well as from their exuviae and faeces
(Bubnic et al., 2020). Legs seem interesting due to their
large quantity of muscle tissue as a suitable source of
DNA (Ozana et al., 2020). Another promising and quan-
titatively efficient DNA source is haemolymph. How-
ever, collecting the latter two could be particularly diffi-
cult without huge individual impairments, e.g. through
immune responses affecting overall performance (Vogel
et al., 2022).
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DNA/RNA extraction methodology

Sample processing

Methods for obtaining nucleic acids depend on the
intended downstream applications, with each method
presenting its own advantages and disadvantages in
terms of ease of procedure, cost, and quality of the
extracted nucleic acids (Figure 2). In some cases, kit-
based methods are used, which provide all the neces-
sary components, while in other cases, chemical-based
methods are employed, which require the purchase of
all components.

DNA/RNA extraction, in particular, involves three dis-
tinct steps: cell membrane and nuclear membrane lysis,
stabilisation of DNA/RNA, and precipitation and wash-
ing. To effectively isolate DNA/RNA, it is necessary to
break down the cell membrane and nuclear membrane,
which are composed of roughly equal parts glycopro-
teins and lipids. To liberate DNA/RNA from chitinous
materials such as legs and wings, buffers containing rel-
atively high levels of dithiothreitol (DTT), proteinase K,
and detergent are typically used. Following isolation, the
next step is to remove contaminants without compro-
mising the stability of the DNA/RNA. DNA/RNA is then
precipitated and washed to remove other protein debris.

It is important to note that DNA extraction meth-
ods can vary significantly from one another, with broad
categorisation into chemical vs silica-based and me-
chanical methods. Chemical methods are further di-
vided into organic extraction techniques, such as the
phenol-chloroform-isoamyl alcohol (PCI) method, and
inorganic extraction techniques, including cetyltrimet-
hylammonium bromide (CTAB) and sodium dodecyl
sulphate (SDS) extraction, salting out, and solid-phase
extraction techniques. Finally, physical extraction in-
cludes magnetic bead-based methods and silica-based
spin column extractions. Figure 2 outlines available and
recommended DNA extraction methods based on the
desired analyses/outcomes.

PCR-based assays

PCR-based methods (mtDNA and other DNA sequen-
cing as well as microsatellite and SNP genotyping),
require uninhibited DNA. Traditional, less expensive,
and time-saving chemical-based methods are suitable
for these applications, as they are effective in many
sample assays. The quickest method, which utilises
Chelex beads to chelate DNA from various materials
and lyses cells using heat, is not necessarily the most
cost-effective. The yield of small DNA fragments is not
ideal for many applications. While Chelex extraction
may outperform other methods in terms of DNA quan-
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tity, purity is often problematic, which, in conjunction
with single-stranded DNA, negatively affects storage sta-
bility, except for shorter fragments up to a few hun-
dred base pairs (Al-Griw et al, 2017). Despite these
limitations, Chelex extraction is effective in removing
PCR inhibitors and is commonly used in PCR-based
methods, such as mtDNA, microsatellite, or ampli-
con sequencing. Alternative methods include chemical
extraction procedures, such as PCI and CTAB, as well
as ‘salting out’ methods using a high concentration of
salts. PCI extraction uses organic solvents to separate
DNA from proteins and other cellular debris, yielding
high quality DNA. However, it is labour-intensive, and
requires careful handling of hazardous chemicals, and
often introduces residual phenol that can inhibit down-
stream PCR analysis. CTAB and other salting out meth-
ods are less toxic, but yield can vary widely depending
on the amount of tissue used (Figure 2).

Native genomic DNA assays

For both whole genome sequencing (WGS) and whole
exome sequencing (WES) it is important to start with
high quality starting material, which is fresh or flash-
frozen at ultra-low temperatures (-80 °C) which effec-
tively rules out frass and exuviae as a reliable source
material for these purposes (Fuentes-Pardo and Ruz-
zante, 2017). Several methods are commonly used for
DNA extraction, each with their own advantages and
disadvantages. A traditional method is the PCI extrac-
tion. Further, silica-based column extraction kits, such
as Qiagen DNeasy Blood and Tissue Kit (Qiagen) or the
Monarch PCR and DNA Clean-up Kit (New England Bio-
labs) are widely used and are usually the first method of
choice for beginners due to their simplicity, efficiency,
and minimised contaminants carrying through. How-
ever, yields can vary depending on the sample type and
specific kit used. Magnetic bead-based extraction meth-
ods are another popular method, especially given their
propensity to be automated, resulting in high purity
extractions. However, residues from the magnetic beads
can interfere with library preparation and sequencing
procedures.

Each of these methods can be tailored to specific
sample types, downstream applications, and sequen-
cing methodology, making them versatile tools in geno-
mic research. For example, if long-read sequences are
desired (i.e. PacBio HiFi or ONT Minion), kits and other
methods exist to ensure gentle digestion and limited
mechanical shearing to ensure long intact fragments of
DNA (Figure 2).
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PCR-based RNA assays

RNA extractions required for qPCR and PCR-based
transcriptomics are undeniably more complicated and
require extensive planning due to the prevalence of
RNases in the environment. The initial step involves col-
lecting the desired tissue and ensuring it is free of RNase
activity, which involves sterilising instruments with a
cleanser like RNase Away or other decontamination
reagents. Once the sample is prepared, the procedure
is remarkably similar to DNA extraction, with options to
use solid-phase methods (silica-based kits), acid phenol
methods like Trizol, and magnetic beads methods. As for
DNA extraction, dedicated kits are commercially avail-
able from all main supplies, e.g. RNeasy Kit (Qiagen)
or EZZN.A" Total RNA Kit (Omega Bio-tek). Addition-
ally, a DNase treatment is often added to the purified
RNA extractions to eliminate any contaminating DNA
fragments. To assess specific changes in expression for
specific genes using qPCR on mRNA transcripts, cheaper
methods that allow for the analysis of many samples
with replication, such as Trizol or automated magnetic
bead systems, would suffice (Figure 2). Alternatively,
RNA can be converted to complementary DNA (cDNA)
using reverse transcription (e.g. Omniscript RT, Qia-
gen) to generate more stable templates for downstream
qPCR gene expression analyses (Section 5). For standard
short-read based RNAseq experiments, silica-based kits,
Trizol, and magnetic beads all work well. If the goal is
to sequence only mRNA, using a method that enriches
for polyadenylated RNA (i.e. using oligo (dT) beads) or
depletion of rRNA is necessary. Newer technologies have
been developed that remove the need for RNA extrac-
tion and instead take the tissue directly to qPCR (e.g.
Scientific’s Cells-to-Ct kit, ThermoFisher). Although effi-
cient, these methods are generally more costly (Section
5).

DNA/RNA-protein-based assays

The interaction of DNA/RNA-protein complexes (with-
out altering the DNA/RNA), i.e. epigenetic regulation,
should also be considered important for the future of
the insects as food and feed industry. Modification of
histone complexes causes structural changes that reg-
ulate gene expression and repression (Glastad et al,
2019). Therefore, phenotypes of interest, maintained by
simple or complex gene regulatory networks, may not
differ between populations whilst the epigenetic regula-
tory control may vary (see Section 5: Gene expression
analysis). Typically, bead- and column-based extrac-
tion methods are required (Figure 2). Unlike DNA/RNA
extractions, the ability to efficiently extract histone
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complexes requires specialised equipment for opti-
mised fragmentation via sonication. Several sequencing
methods exist for studying the epigenome e.g. histone
modifications (ChIP-seq), DNA Methylation (MeDIP),
chromatin conformation (Hi-C), chromatin accessibility
(ATAC-seq), etc., as reviewed extensively by Li (2021).

3 Evolutionary and population genetics

While arguably one of the most important aspects for
understanding species biology and implementing effec-
tive genetic management strategies, defining a popu-
lation is not a trivial task. Characteristics such as its
effective population size, genotype and allele frequency
distributions, and the degree of linkage disequilibrium
determine the extent of phenotypic variation within the
population, and thus its potential for adaptive evolu-
tion, extinction risk, and ‘susceptibility’ to stochastic
processes (i.e. genetic drift) under natural and man-
made selection pressures. Here, we outline why and how
to assess these parameters, how to evaluate single- and
multi-population structure, and how to reconstruct evo-
lutionary relationships and demographic history.

For a summary of relevant measures and tools for
evolutionary and population genetics analyses we refer
to dedicated reviews, including Excoffier and Heckel
(2006), Bourgeois and Warren (2021), Saravanan et al.
(2020), Casillas and Barbadilla (2017) and Sethuraman
et al. (2020), that are also collated in Table Al in the
Supplementary material.

Basic organisation of genetic variation

The population concept

Although one of the central concepts in biology, the def-
inition of a population depends on the context. Two
broad conceptual understandings of biological popula-
tions exist: (i) the ecological view that defines a popu-
lation as a group of organisms of the same species that
co-inhabit a space in time; and (ii) the evolutionary view
that emphasises the reproductive cohesion of a group of
organisms (Waples and Gaggiotti, 2006). Through the
application of assisted reproductive technologies (e.g.
artificial insemination and embryo transfer) and the
continuous displacement of farmed species by human
activities, these two definitions have become quite sep-
arated from each other, because individuals isolated by
both geographical space and time can still contribute
to a single gene pool. Throughout this BugBook article,
the term population refers to units of individuals that
are genetically and spatially related, either natural pop-
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ulations in a certain geographic location or managed
breeding populations including production stocks and
laboratory strains, and that together may form a geneti-
cally and otherwise subdivided metapopulation.

Effective population size (N,)
In population genetics, a distinction is made between
the census population size (N, ), the estimated ‘absolute’
number of individuals in a biological population, and
the effective population size (N, ), the number of the-
oretical, genetically distinct individuals that contribute
to the next generation (Frankham et al.,, 2004). As such,
the N, of a population is a critical parameter deter-
mining the strength of evolutionary forces acting on
that population (see Section 3: Evolutionary forces) and
is in most cases much smaller than N, (Waples and
Gaggiotti, 2006). Populations with smaller N, harbour
reduced genetic diversity due to inbreeding and allelic
loss by random drift, making such populations suscepti-
ble to inbreeding depression, low evolvability, and even-
tual extinction (Hedrick and Garcia-Dorado, 2016; Pal-
stra and Ruzzante, 2008). Estimating N, is important
for insect farming operations to ensure that (i) founding
populations are large enough to sustain a robust breed-
ing pool, (ii) the population remains viable and fit over
successive generations, and (iii) sufficient genetic vari-
ation persists in the population to enable response to
selection (e.g. Hull et al., 2024; Rhode et al., 2020).
Unfortunately, N, is a notoriously difficult parame-
ter to estimate, as it depends strongly on demographic
parameters, including the harmonic mean of N, over
successive generations, sex ratios, and varied reproduc-
tive success of mate-pairs. As no single method con-
siders all demographic factors, true N, is believed to
be often overestimated (Luikart et al.,, 2010). With the
advent of molecular genetics and the use of DNA mark-
ers (Section 2), N, is increasingly estimated using molec-
ular approaches (Hohenlohe et al., 2021). These molecu-
lar approaches can be grouped into two broad concepts:
(i) inbreeding N, (N,;) and (ii) variance N, (N,,) (Luikart
et al., 2010) based, wherein N,; considers primarily the
presence of heterozygosity within a population, and N,
considers the change in allele frequencies over genera-
tions. Due to the temporal component, the N, approach
is particularly sensitive to the early detection of loss of
genetic diversity and gives an approximation of short-
term N, in a population. Due to their relatively short
lifecycles and rapid generational turnover, insects over-
come one of the major limitations of computing N,
that require two sampling timepoints, such as N,, (e.g.
Rhode et al., 2020). However, as levels of heterozygos-
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ity usually only stabilise in the generations following a
bottleneck event, N, can still be considered superior to
N,; for giving an indication of mid- to long-term N,. For
estimating N, from a single sample, the linkage disequi-
librium method (LD-N,) has been shown to be the most
robust (Waples, 2024; Waples and Do, 2010). As a pop-
ulation becomes more inbred and thus more homozy-
gous, LD between loci increases in inverse proportion to
N, (e.g. Kaya et al., 2021).

Genetic equilibrium and diversity

Measurements of genetic diversity are important for
understanding the genetic health of a population. This
is especially true in managed populations with short
generation intervals, such as insects, which can experi-
ence rapid and irreversible loss of diversity (e.g. Rhode
et al., 2020). Yet this also applies to their wild congeners,
whose ephemeral habitats might influence population
dynamics (e.g. DiLeo et al., 2024). The two primary mea-
sures of genetic diversity are allelic diversity and het-
erozygosity (Greenbaum et al., 2014).

Allelic diversity is defined by the number of alleles
present (A,), which can be impacted by the number and
nature of the genetic markers assessed (Section 2). It
is reported as numbers of alleles per locus, total alle-
les across loci, or average number of alleles over a set
of loci. Unfortunately, this parameter is subject to bias
in sample size — the more individuals, the more rare
or low frequency alleles will be detected, meaning that
results cannot be directly compared between samples
of different sizes. To mitigate this, effective number of
alleles (A.) and allelic richness (A,) have been devel-
oped to correct for rare alleles and allow comparison
of estimates across samples. Standardisation is hereby
often based on the sample containing the fewest indi-
viduals (e.g. Kaya et al, 2021). Other commonly used
estimates of ‘allelic’ diversity include nucleotide diver-
sity that measures the fraction of mismatches between
pairs of DNA sequences drawn from the same popula-
tion (Korunes and Samuk, 2021), and haplotypic diver-
sity that exploits LD across a number of SNPs (e.g. Albu-
raki et al., 2023).

Heterozygosity measures how alleles segregate into
genotypes. For a locus harbouring two alleles, it reaches
its maximum at 0.5 if both alleles segregate at equal
frequency. With more than two alleles, expected het-
erozygosity is calculated as one minus the sum of all
squared allele frequencies, so generally the more alle-
les at a locus, the more heterozygosity is expected. In
a population that is in Hardy-Weinberg Equilibrium
(HWE), where no evolutionary forces act on a particu-
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lar locus, each allele in the gene pool should have equal
(frequency-dependent) probability to combine with any
other allele in the gene pool in subsequent diploid gen-
erations (Frankham et al, 2004). This equates to ran-
dom mating, and mathematically to allele and genotype
frequencies remaining at equilibrium after one genera-
tion (Mayo, 2008). This measure is called the expected
heterozygosity (H.,) and is one of the primary statistics
for evaluating evolutionary potential of a population
due to its more universal algebraic accessibility com-
pared to allelic richness (Frankham et al., 2004). When
non-random mating occurs in a population, including
selection subsets of individuals for breeding purposes
(Section 4), deviation from expected genotypic frequen-
cies (under HWE) can lead to inflated or deflated het-
erozygosity estimates. This is captured by the observed
heterozygosity (H,,), which is directly determined from
counts of the genotypic data. Deviation from HWE is
most frequently measured using F-statistics, that is fixa-
tion indices (Wright, 1965). One of the fixation indices,
Fis, quantifies the relationship between observed and
expected heterozygosity within a population as Fig =
(Hexp = Hobs)/Hexp, and gives an indication of hetero-
or homozygous excess or deficiency. Capturing poten-
tial heterozyous deficiency, the Fg-value is also often
interpreted as a molecular analogue of the inbreeding
coefficient, but should be done so with caution (e.g.
Hoffmann et al., 2021).

Based on H,,, compared to H,,, for individual or
combined loci, we can formulate the inbreeding coef-
ficient (F) of (i) an individual (I) relative to the total (T)
population (Fyr); (ii) an individual relative to the sub-
population (Fy); and (iii) a subpopulation compared to
the total population (Fg;);and 1 - Fip = (1 - Fig)(1 - Fgr)
(Conner and Hartl, 2004). The F-statistics are thus of
high importance for population genetics analyses and
can be conceptually extended to identify population
subdivision and metapopulation structure (see Section
3: Detecting (meta)population (sub)structure).

A population in equilibrium will have an F-value ~ 0,
where F is defined as the inbreeding coefficient of the
relative hierarchical population structure (Fig for within
subpopulations and Fg; between sub-populations). This
ultimately measures deficiency or excess of observed
heterozygous genotypes across loci, relative to the
expected heterozygosity under random mating. Het-
erozygous deficiency (H,

exp

> Hg,) leads to posi-
tive F-values, possibly due to positive assortative mat-
ing, where individuals with similar genotypes mate
more frequently, and/or inbreeding. Negative F-values
through excess of heterozygosity compared to random
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mating can eventually result from negative assortative
mating or outcrossing of individuals from genetically
distinct populations.

At the individual level, classical inbreeding coeffi-
cients describe the probability that two alleles at any
locus are identical by descent (Hartl, 2020). When based
on pedigree evaluation (Fpgp ), the coefficients are calcu-
lated using Wright’s formulae and under the assumption
of a 0.5 chance of inheritance of each allele between
generations. However, pedigree tracking in insects is
challenging, especially the paternal side, due to their
mating systems. Alternatively, F may then be inferred
from genotypic frequency data or the length of runs
of homozygosity (Froy) across the genome (Gmel et
al., 2023; Kanaka et al, 2023; Purfield et al., 2012;
Rodriguez-Ramilo et al., 2019).

Evolutionary forces

Beyond characterising patterns of genetic diversity,
understanding the evolutionary processes is pivotal for
successfully managing wild and farmed populations.
These processes involve a complex interplay of forces
(De Meets et al., 2007), which can be broadly classi-
fied as (i) demographic, which relate to effective pop-
ulation size changes, mating systems, and gene flow,
and (ii) locus-specific, which include uneven muta-
tion and recombination rates along the genome, as
well as selection. Demographic forces are expected to
entail genome-wide impacts on diversity and can be
considered neutral background variation (Casillas and
Barbadilla, 2017; Lewontin and Krakauer, 1973). Locus-
specific evolutionary forces, however, generate region-
specific patterns of diversity.

Evolution is defined as the change in allele frequen-
cies within a population, induced by the evolution-
ary forces. Furthermore, in the absence of evolution-
ary forces, a population is considered ideal (i.e. infinite
size, isolated, panmictic reproduction, with no selection
or mutation) and remains in HWE. However, in reality,
all populations are influenced by the four evolutionary
forces: mutation, genetic drift, migration, and selection.

Mutation is the ultimate source of new genetic varia-
tion (Loewe and Hill, 2010). Heritable mutations occur
in the germ line, with the introduction of errors dur-
ing DNA replication (i.e. substitution, deletion, or inser-
tion of nucleotides). As fidelity in DNA replication is
important for survival, mutation rates are extremely
small. Moreover, the mutation rate is variable along the
genome, between individuals, populations and species.
Chromosomal rearrangements also represent a form of
mutation, and particularly recombination shuffles pre-
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existing genetic variation within each population, cre-
ating new allelic combinations, potentially leading to
phenotypic variation.

According to the neutral theory of evolution (e.g.
see Casillas and Barbadilla, 2017), the fate of mutations
is largely determined by genetic drift, i.e. the unpre-
dictable, random changes in allele frequencies. Genetic
drift depends on N, (Kimura, 1968) and can lead to
either random loss or fixation of some variants (Masel,
2011), and generally to reduced genetic diversity. Partic-
ularly small populations are prone to strong drift that
can lead to population decline and extinction due to a
higher risk of randomly fixing deleterious alleles (Smith
and Haigh, 1974).

Low levels of genetic diversity in a population can
be rescued by migration that causes gene flow from
external individuals, i.e. transferring alleles from one
population to another. Even relatively small numbers
of migrants per generation can equalize allele frequen-
cies between the source and the sink populations, and
result in an effectively interbreeding panmictic popu-
lation. In that sense, gene flow can counteract genetic
drift by increasing N,. In natural populations, migra-
tion is constrained by geographic distances or physi-
cal barriers. Populations in closer proximity exchange
individuals more frequently, and accordingly, tend to
be more closely related. Conversely, captive populations
are maintained in isolation and experience little to no
gene flow from outside. Combined with elevated levels
of drift due to reduced N,, these populations can rapidly
diverge from their source populations, thereby facilitat-
ing overall formation of population genetic structure
(see Section 3: Genetic clustering, admixture and intro-
gressive hybridisation).

Both migration and genetic drift affect the estab-
lishment of new populations by a limited number of
individuals from the original population, which is con-
sidered a founder effect (Hartl, 2020). Controlling for
the putative impact of such population bottlenecks is
highly relevant for maintaining variation in popula-
tions of insects farmed for food and feed, which usually
only contain a fraction of the diversity present in their
wild counterparts, with possible health consequences
as increased susceptibility to pathogens (Croze et al.,
2016).

Selection acts on genetic variation through the fit-
ness of individual phenotypes, according to their repro-
ductive success in particular environments. To enable
selection to act on a trait (natural or artificial), the trait
must exhibit phenotypic variation within the popula-
tion that to some extent must stem from genetic vari-
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ation between individuals (Falconer and MacKay, 1996).
New genetic variants introduced through mutation or
migration are generally neutral, less frequently deleteri-
ous, and only rarely advantageous. Individuals carrying
mutations that reduce fertility will reproduce less, and
their alleles will gradually disappear from the popula-
tion (known as negative or purifying selection, with a
negative selection coefficient; s < 0). Conversely, indi-
viduals carrying mutations underlying desirable traits
will reproduce more frequently, spreading their alleles
in the population (positive selection; s > 0), which
progressively adapts to the environment (Fisher, 1958).
The latter represents the sole adaptive mechanism and
forms the basis of any breeding scheme (Section 4).

The time required for removing or fully spreading
a non-neutral allele in the population depends on its
initial frequency and its selection coefficient (s), but
also on its dominance coefficient (%) and on N,. Even
highly beneficial mutations may be lost forever if N,
is small and genetic drift is high. The degree of dom-
inance also determines the phenotypic effect of an
allele in heterozygous state and can range from reces-
sive (no effect on fitness; 2~ = 0), additive (interme-
diate effect on fitness; £ = 0.5), to dominant (full
effect on fitness; 4 = 1). Individuals with a heterozy-
gous genotype may also exhibit superior or inferior fit-
ness than their homozygous counterparts due to over-
dominance (h > 1) or under-dominance (2 < 0). As
a mechanism of balancing selection, overdominance
can maintain both alleles segregating in the popula-
tion, making trait improvement through selective pure
breeding less efficient. Maintaining diversity is how-
ever beneficial in fluctuating and unpredictable envi-
ronments, e.g. with varying predator and pathogen pres-
sure (Croze et al., 2016). Except for balancing selection,
selection leads to a loss of genetic diversity on the loci
under selection or even in a wider region. A fundamen-
tal consideration when designing breeding schemes is
that dominance and selection coefficients are not inde-
pendent but rather negatively correlated: since harm-
ful mutations are often recessive, consanguinity usu-
ally entails deleterious effects, the so-called inbreed-
ing depression (Charlesworth and Charlesworth, 1999;
Hedrick and Garcia-Dorado, 2016), see Section 4: Main-
taining genetic diversity. Therefore, by selecting a small
proportion of individuals with desirable traits for con-
tributing to the next generation, breeders inevitably add
a drift component as well, with possibly unwanted fit-
ness and performance effects on their farmed stock.

Overall, natural and artificial selection are powerful,
context-dependent evolutionary forces. Yet, in real pop-
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ulations, selection tends to be a complex process featur-
ing interplays between selection regimes (e.g. Hill and
Robertson, 1966) and genetic architectures of traits (Sec-
tion 4). Multiple alleles with variable effects may segre-
gate at any given locus, traits are frequently governed by
multiple loci which may epistatically interact, and can
be correlated with other traits, that may themselves be
subject to context-dependent selection.

Geographical and evolutionary genetics: allele
frequency changes in space and time

Population differentiation and its causes

Individual and combined evolutionary forces may act
differently on populations distributed across space and
time, both including single or multiple traits, and may
ultimately homogenise or subdivide populations at dif-
ferent hierarchical levels.

Founder effects are common during colonisation of
new habitats or recolonisation after population contrac-
tion (Pannell and Charlesworth, 2000; Sztics et al., 2017).
Such processes usually involve comparatively small sub-
samples, not necessarily representative of the original
population, and can hence translate into significant
genetic drift or a genetic bottleneck characterised by a
severely reduced overall number of alleles (Kanaka et
al., 2023). The same applies to the establishment of a
captive laboratory or production population from one
or multiple existing production or laboratory strains
(Cali et al., 2024; Kaya et al., 2021), or from a wild popu-
lation (Ewusie et al., 2019; Rhode et al., 2020). Extended
gene flow between different natural or managed pop-
ulations may result in a unilateral increase of diver-
sity, mutual genetic homogenisation, or assimilation of
one population by another, whereas inbreeding coupled
with negligible migration likely increases differentiation
among subpopulations (Simées et al, 2010). Adaptive
processes via natural selection can counteract or rein-
force the effects of migration or drift.

Regardless of any selective forces, in large natu-
ral populations, genetic differentiation can also result
from unequal mating probability between individu-
als as a function of geographic distance, i.e. isolation-
by-distance (Aguillon et al., 2017; Suarez et al, 2022).
However, isolation-by-distance patterns are sensitive to
sampling design (Meirmans, 2015) and may entail a phe-
nomenon called ‘rare-allele-surfing’ at the colonisation
front as a consequence of comparatively rapid popula-
tion expansions (Excoffier and Ray, 2008), as seems the
case for BSF non-native range expansions (Kaya et al.,
2021).
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Possibly “unexpected” structure may also reflect a
Wahlund effect (De Meels et al, 2007): genotypes
drawn from a sample of individuals which are effec-
tively not in mating equilibrium will collectively exhibit
heterozygote deficiency (Hartl, 2020). Detection thereof
may indicate an unnoticed sampling artefact, e.g. when
field sampling captured seasonally non-overlapping
generations at a given site, which can include sampling
adult and immature insects at the same time (Section
2). Alternatively, genetic substructure in sympatry may
reveal previously unrecognised ecological associations
and/or phylogenetically derived cryptic taxa (Castillo
and Barbash, 2017; Hagberg et al., 2022; Sanchez-Guillén
et al., 2016).

Indication for subpopulation structure in suppos-
edly standardised farming conditions can have serious
consequences (see Section 4: Monitoring and manag-
ing genetic diversity). For example, widely traded BSF
populations of mixed North American and Asian origin
exhibit deviations from genetic equilibrium regardless
of geographical area they were sourced from (Kaya et al.,
2021). This suggests poorly understood pre- and/or post-
mating mechanisms influencing reproductive success
and particularly sexual conflicts (Tomberlin et al., 2025)
between distinct evolutionary lineages (Generalovic et
al., 2023). Management itself may induce substructure
over time, e.g. through discrete restocking of breeding
parents where restricted geneflow between successive
cycles possibly reinforces divergence, which can ham-
per breeding progress if undetected (Section 4).

Detecting (meta)population (sub)structure
Deciphering allele frequency variation in space and
time is not only informative to reconstruct past influ-
ences on present (meta)population structure (Bradburd
and Ralph, 2019). Exploring substructure helps to disen-
tangle population relationships and inform both future
monitoring of wild populations and managing breed-
ing populations, yet requires comprehensive sampling
of wild and captive populations from the entire, possibly
global range. Utilising multiple complementary meth-
ods for combined analysis of metapopulation structure
is generally recommended.

The above-mentioned F statistics are routinely used
to characterise subdivision at different hierarchical lev-
els of population structure. By accounting for allele fre-
quency differences, the fixation index Fg (Wright, 1965)
is widely used to quantify pairwise genetic differentia-
tion between populations, and the overall extent of par-
titioning due to population structure within metapop-
ulations (De Meetls et al., 2007; Kanaka et al., 2023;
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Meirmans and Hedrick, 2011). Its values range from O
meaning complete panmixia and free interbreeding, to 1
meaning complete differentiation and no alleles shared
between subpopulations. Extensive matrices of pairwise
Fsp can be visualised via heat-maps (Eleftheriou et al,
2022b) or by constructing unrooted genetic dendro-
grams using e.g. unweighted pair group method with
arithmetic mean or neighbour-joining approaches (Sup-
plementary material, Table 1A).

Another marker-independent approach for a bet-
ter general overview of inter-population comparison is
Analyses of Molecular Variance, AMOVA (Excoffier et
al., 1992; Kanaka et al., 2023). AMOVA partitions the
genetic variance into proportions explained by within
and among components of individuals and populations
in a non-hierarchical manner, as well as by levels of
one or multiple hierarchical (nested) factors, such as
geographic origin or captive versus wild-sourced, as rel-
evant for a given insect study. The extent to which pair-
wise Fgp reflect isolation-by-distance patterns among
populations can be tested by correlating matrices of
genetic and geographic distances using a Mantel test,
usually upon adequate data linearization/transforma-
tion (Rousset, 1997). Moreover, as geography in nature
may be confounded with associated factors of eco-
logical relevance (e.g. Sandrock et al, 2011b), a par-
tial Mantel test can extend the concept of AMOVA
by assessing genetic differentiation between levels of
a given sampling factor (e.g. habitat) while controlling
for geographic distance (see Diniz-Filho et al.,, 2013).
Allele frequency relationships of individual multilo-
cus genotypes or entire populations can be visualised
in dendrograms using geometric approaches (Cavalli-
Sforza and Edwards, 1967; De Meets et al., 2007). Alter-
natively, individuals or groups defined according to
sampling populations, geography, captivity status, or
modelled genetic clusters (see Section 3: Reconstruct-
ing demographic history) can be illustrated along the
most explanatory dimensions of a multivariate space
using principal component analysis (PCA) (Abegaz et
al., 2019; De Meets et al., 2007; Francois et al., 2010;
Kanaka et al., 2023), or via derived algorithms as imple-
mented in discriminant analysis of principal compo-
nents (DAPC) (Thia, 2023).

Evaluating population structure in farmed insects is
best accomplished through a combination of popula-
tion genetic indices, statistical procedures, and visual
approaches. For example, geometric visualisation is
principally blind to diversity components behind ge-
netic structures. Complementary inspection of allelic
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richness, e.g. via mixed models (Kaya et al., 2021), can
then help identifying diversity hot spots.

Genetic clustering, admixture and introgressive
hybridisation

Metapopulation genetic structure can further be in-
ferred through clustering-based methods. This is partic-
ularly helpful for large datasets with numerous popu-
lations, e.g. sampled across a species’ distribution range,
or for allocating previously uncharacterised populations
in the context of published genotypic data. The ancestry
of each individual genotype is modelled as descending
from a pre-defined number of potential genetic clusters,
K. Ancestry coefficients can reveal pure assignment or
admixture between different clusters.

Multiple implementations of model-based clustering
exist (Supplementary material, Table 1A), essentially dif-
fering in their statistical procedures to find the optimal
solution, conditioned on K. Virtually all implementa-
tions provide visualising relative cluster contributions to
individuals within populations or geographic origin (e.g.
Zhang et al., 2009). Bayesian modelling using Markov
Chain Monte Carlo (MCMC) techniques are popular for
estimating distinct clusters from multilocus genotype
frequencies, as properly accounting for the uncertainty
associated with limited data (Pritchard et al, 2000).
With full genome sequences, maximum likelihood (ML)
approaches provide much faster optimisation proce-
dures, at limited costs in accuracy (Alexander et al,
2009). More recent developments allowed to further
speed up computations, including mathematical deriva-
tives for safer and faster ML optimisation (Beugin et al.,
2018; Cheng et al., 2021).

Caution is advised when inferring distinct clusters,
because numbers of K inflated beyond biological mean-
ing result in overfitted models and misleading estimates
of admixture. It is thus crucial to refine model choice
based on respective model log-likelihoods (Evanno
et al, 2005), cross-validation, or information criteria
(Akogul and Erisoglu, 2016). This is important for both,
accepting panmixia with modest isolation-by-distance
across larges scales, as found in house flies (Bahrndorff
et al., 2020) or aphids (Sandrock et al., 2011a), but also
for appropriate inference of complex population struc-
ture resulting from dynamic evolutionary history (Kaya
et al., 2021; Nunez et al, 2024). Moreover, all model-
based implementations assume that population genetic
principles, such as HWE, are met. Consequently, despite
some robustness to violations (Falush et al., 2003; Meir-
mans, 2012), they tend to assign unique genetic clus-
ters to strongly diverged populations, although these
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may have originated from ancient admixture events.
Likewise, recent bottlenecks may inflate natural pop-
ulation structure (Chapuis et al, 2014) and challenge
traceability of heavily drifted production strains to a
common yet unsampled source. Unknown demographic
history, ecological associations, and insufficiently repre-
sentative sampling (or extinct missing link populations)
bear some risk of misleading conclusions (Lawson et
al., 2018; Meirmans, 2015), especially when analysing
intensively managed populations and farmed stocks.
Alternative models, insensitive to inbreeding or time-
differences between samples, have been developed,
based on factor analysis (Frangois and Jay, 2020) or on
the so-called f4-statistics, although the latter is compu-
tationally feasible up to a few hundred genomes only
(Librado and Orlando, 2022). Genetic cluster analyses
may thus be used as explanatory rather than a diag-
nostic tool, whereby inspecting results along a range of
K itself can provide insights into population stratifica-
tion and help scaling relative impacts in space and time
(Gilbert, 2016; Gilbert et al., 2012).

Explicitly describing the population history behind
clustering results involves co-inferring population splits
alongside historical episodes of gene flow. These pop-
ulation histories are often summarised as admixture
graphs (Nielsen et al., 2023), or inferred through coales-
cent modelling (Kamm et al., 2020). Monitoring ongo-
ing geneflow between production strains or with local
wild populations is in fact crucial to mitigate unin-
tended introgression in either direction, possibly chal-
lenging breeding progress of farmed strains or genetic
integrity of wild populations (see Section 4: Monitor-
ing and managing genetic diversity). Reconstructing his-
toric and recent admixture is particularly interesting
because human traffic and trade likely facilitated sec-
ondary contact between genetically distant populations,
or their (repeated) translocation into uncolonised yet
suitable ranges, from where further dispersal and nat-
uralisation around the globe was possibly initiated even
before the advent of modern farming of insects for food
and feed. Comparable to population genetic patterns in
invasive pest insects (Blumenfeld et al., 2021; Sethura-
man et al., 2020), the global metapopulation structure
of the BSF reflects decisive historic admixture events,
which fuelled large scale dispersal including coloni-
sation of multiple non-native continents through sec-
ondary and tertiary admixture (Kaya et al., 2021).

To assess whether introgressed genetic material pro-
vides a selective advantage (see Section 3: Signatures of
selection), as documented in multiple instances (Clark-
son et al., 2014; Moest et al., 2020; Svedberg et al., 2021),
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tracing its ancestral origin and fate is key. Common
methods to pinpoint introgressed tracts involves varia-
tions of the Pattersons D statistic, or ABBA BABA test
(Durand et al., 2011; Green et al., 2010). This includes
the f; (Martin et al, 2014), and f-branch (f;) statis-
tics (Malinsky et al.,, 2018), the latter of which can be
used with a known phylogeny to identify which popu-
lations were involved in the hybridisation event (donor
or receiver). Using the f-branch statistics, up to 15.2%
gene flow has been detected from wild to captive popu-
lations of BSF, highlighting potentially useful strategies
for maintaining diversity in closed populations (Gener-
alovic et al., 2023).

High congruent support was found for admixture in
certain BSF production strains as well as for admix-
ture between wild BSF populations e.g. from Australia
and Central Europe, when comparing microsatellite
data (Kaya et al., 2021) and applying f-branch methods
to genome-wide SNPs (Generalovic et al., 2023). This
highlights the possibility for efficient complementary
screening strategies, where basic qualitative evidence
for admixture could precede more costly measures to
quantify proportion of gene sharing and identify loci
involved. In-depth genomic characterisations of relative
contributions to an admixed population can be relevant
to inform population management.

Reconstructing demographic history

Disentangling ancient population structure from rela-
tively contemporary population genetic dynamics (pri-
marily reflecting anthropogenic influences) and delin-
eating native as well as non-native ranges is challeng-
ing. Classifying diversity patterns, such as indigenous
genetic hot spots vs secondary admixture, is important,
but calls for inferring relative ranking of possibly con-
founding spatial and temporal effects. Exhaustive sam-
pling of wild and captive populations from the entire
distribution range increases the chance to infer and
date a given species’ demographic trajectories appropri-
ately, including delimitation of possible domestication
centres. The emerging discipline of museomics, involv-
ing DNA sequencing from historical specimens housed
in entomological collections, also opens a window into
the genetic past and helps in reconstructing popula-
tion structure before the more recent advent of insect
farming (Wandeler et al., 2007). A versatile tool for com-
paring models of competing demographic scenarios is
Approximate Bayesian Computation (ABC) (Beaumont,
2010; Csilléry et al., 2010). When deep evolutionary his-
tory remains uncertain, possibly due to strong masking
by contemporary human-mediated signals, formulating
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and statistically assessing models based on plausible
biological hypotheses is a critical step. Careful construc-
tion plus correct specification and evaluation of all rea-
sonable demographic hypotheses, including underlying
parameters and relevant summary statistics, is advised.
ABC analyses have been used for microsatellite data to
infer native range expansions of the BSF in the Amer-
icas, as well as its colonisation origins and courses on
different non-native continents (Kaya et al, 2021). To
account for increasingly complex genomic data sets (e.g.
Blumenfeld et al., 2021), machine learning tools have
already (Pudlo et al, 2016) and continue to strongly
improve computational efficiency for demographic his-
tory inference (Bourgeois and Warren, 2021; Fortes-
Lima et al, 2021; Tran et al, 2024), including edible
insects (Chapuis et al., 2020). Recently advanced algo-
rithm efficiency led to the development of software for
inferring Ancestral Recombination Graph (ARG) that
encodes the complete genealogical history of samples
(Supplementary material, Table 1A). The inferred ARG
is represented with a sequence of trees, where each
tree represents the genealogical history of a part of the
genome that was broken up by recombination. The tree
sequence represents an evolutionary encoding of the
data that compresses the file and enables efficient com-
putation of relevant statistics.

Mito-nuclear phylogeographic patterns

Complementing nuclear-genetic biogeographic patterns
with phylogenetically informative mitochondrial mark-
ers adds valuable insights (Edwards et al.,, 2022), see
Leite et al. (2014) for an insect example. Geographic
associations of genealogical lineages can shed light on
evolutionary cradles, vicariance effects, processes like
secondary contact or directionality of range expan-
sions. Compared to diploid nuclear loci, mitochondrial
haplotypes are maternally inherited and more prone
to demographic stochasticity. Accordingly, phylogeo-
graphic patterns based on mtDNA alone may not be
overinterpreted. However, comparing them to demo-
graphic inferences based on nuclear markers can itself
represent a highly informative evaluation for recon-
structing evolutionary fates. Conclusions drawn from
different marker systems may both be congruent with
a certain hypothesis (e.g. diversity hot spots and dis-
persal routes), complexity may increase beyond individ-
ual marker perspectives (e.g. relative contributions to
admixture), or a seemingly plausible narrative may be
challenged by conflicting signals. For instance, nuclear
genetic structure among populations of the migratory
locust is substantially lower among subpopulations in
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areas with frequent outbreaks, despite similar levels
of diversity and effective population sizes (Chapuis et
al., 2009). However, despite its eponymous mobility,
its native range is phylogeographically highly struc-
tured. Dispersal from African hotspots established a
Southern and a Northern major lineage across Eura-
sia and Australia that each comprise two distinct yet
shallower latitudinally structured mitochondrial clades
(Ma et al., 2012). Further, the stronger mitochondrial
than nuclear genetic structure of house fly populations
in their non-native ranges (Krafsur et al, 2005) likely
reflects that originally colonising maternal lineages pre-
vailed despite ongoing nuclear geneflow. The intrigu-
ing case of the BSF highlights the potential relevance
of global phylogeographic data for breeding strategies.
After deducting mitochondrial patterns mediated by
historic translocations due to human commensalism as
well as current trade for farming worldwide, reconcil-
ing native phylogeographic structure (Generalovic et al.,
2023; Guilliet et al., 2022; Stahls et al., 2020) points at
two major mtDNA clades from South and North Amer-
ica, respectively, separated by up to 5% COI divergence.
Apart from experimental disproof of reproductive isola-
tion of both evolutionary lineages (Stahls et al., 2020),
admixture between them was decisive to initiate global
non-native naturalisations (Kaya et al., 2021). However,
the phylogenetically older dating of the North American
mitochondrial lineage (Guilliet et al., 2022) appears to
contrast northwards declining nuclear genetic diversity
across the Americas (Kaya et al., 2021). Recent genomic
evidence (Generalovic et al., 2023) corroborates deep
phylogenetic signals similarly reflected in both mito-
chondrial and nuclear genomes and moreover identi-
fies a Central American zone of mito-nuclear discor-
dance (e.g. Toews and Brelsford, 2012). Hypothesising
the BSF represents a cryptic species complex shaped
by ancient hybridisation might have profound conse-
quences on interpreting domestication history and opti-
mising future breeding.

Signatures of selection

Population structure reflects cause and consequence
of the interplay of ecological and evolutionary pro-
cesses shaped by population genetics and demography,
adaptive and non-adaptive forces, and their interactions
(Lowe et al., 2017). Differentiating between the effects of
demography and selection on genomic signals is noto-
riously difficult (Bourgeois and Warren, 2021; Li et al,,
2012). Signals of selection can be confounded by genetic
drift (Jensen et al.,, 2005), most notably through small
founding populations, as random fluctuations of allele
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frequencies can lead to loss of genetic diversity genome
wide. Founder effects can generate a strong genetic
bottleneck that shows randomised signals of reduced
genetic diversity, somewhat similar to that of selective
sweeps (Nielsen, 2005). Adequate modelling of popu-
lation demography can go a long way towards distin-
guishing between signals of selection and drift. Statis-
tical methods for detecting intra-population selection,
such as sweeps, may use the Site Frequency Spectrum
(SFS), Linkage Disequilibrium (LD), and measures of
genetic diversity (n). Cross-population selection scans
similarly rely on single site markers or haplotype infor-
mation (Supplementary material, Table 1A).

Hard selective sweeps are more easily identifiable
(Saravanan et al., 2020), and occur when a rare ben-
eficial mutation rapidly increases in frequency via
selection due to an increase in fitness (Nielsen et al.,
2005). Regardless of the reason, e.g. local adaptation
in heterogenous environments (Tiffin and Ross-Ibarra,
2014), transfer to captivity (Montgomery et al., 2010;
Rhode et al.,, 2020) or selective breeding (Hull et al,
2024), this process causes surrounding linked alleles
to “sweep” along with the beneficial allele by a pro-
cess called genetic hitchhiking. This reduces genetic
variation in the flanking regions and generates a pro-
nounced signal of large homozygous regions in linkage
disequilibrium (Smith and Haigh, 1974). In contrast, soft
selective sweeps arise from standing genetic variation,
which becomes selected due to sudden environmen-
tal changes, e.g. in feedstock (Hermisson and Pennings,
2005). Fixation of selected alleles can be reached but
segregating on different haplotype backgrounds around
the selected site. This does not produce a pronounced
reduction in diversity and limits our potential to identify
soft sweeps, despite they may represent the prevalent
mode of adaptation (Saravanan et al., 2020). Common
methods of selective sweep analysis include the Com-
posite Likelihood Ratio (CLR) test that compares the
neutral demographic model for SFS with a selective
model that considers a selective sweep in each genomic
window. This method identified regions with sweep-like
patterns associated with honeybee adaptation (Ji et al.,
2020) and BSF domestication (Generalovic et al., 2023).
Furthermore, selective sweep analysis has resolved loci
involved in butterfly wing patterning, size and shape
(Moest et al., 2020; Montejo-Kovacevich et al., 2021),
and insecticide resistance (Barnes et al, 2017). Under
domestication, for example, up to 3% of the gene reper-
toire of the silkworm is impacted by selection through
sweeps (Tong et al., 2022).
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In addition to selective sweeps, we discuss several
key methods for detecting selection as outlined in
Supplementary material and reviewed in Saravanan et
al. (2020). As sweeps reduce genetic diversity locally,
around selected alleles, general measures of genetic
diversity are based on nucleotide diversity (). Moti-
vated by the same rationale, another common method
to identify more recent selection signatures is to search
for Runs of Homozygosity (ROH), continuous homozy-
gous regions of the genome typically classified into short
(<1 Mb), intermediate (1-5 Mb), and long (>5 Mb) runs
(Peripolli et al., 2017). Short runs are products of shared
ancestry broken down by recombination whereas long
ROH can be used to identify patterns of recent inbreed-
ing or selection, as exemplified for BSF (Generalovic et
al., 2021), honeybees (Gmel et al., 2023), and aquacul-
ture species (Paul et al, 2022). LD-based methods pro-
vide additional power in deciphering between drift and
selection with selective signals providing a more struc-
tured pattern of linkage decay surrounding the bene-
ficial allele whereas drift generates a more widespread
non-specific pattern of LD. Methods as the integrated
Haplotype Score (iHS) (Voight et al, 2006) are more
robust to demographic artefacts and can be combined
with SFS-based methods where possible (Hull et al.,
2024). For inter-population detection of selection, both
single-site differentiation using Fg; has been previously
outlined above and discussed further in Section 4. Alter-
natively, haplotype-based methods can be used to cross
compare populations for genomic regions that reached
intermediate-to-high frequencies as blocks of extended
haplotype homozygosity (XP-EHH), a signal that cap-
tures population-specific selective sweeps (Cai et al.,
2024; Montero-Mendieta et al., 2019).

Further, confounding effects of sample size, N, and
population history (including time since domestication
or selection) should be considered when performing
selection analyses. It is also important to note that prod-
ucts of selection may arise due to influences from alter-
native evolutionary forces such as hybridisation and
adaptive introgression (Calfee et al, 2020). Comple-
menting several methods to detect selection with phe-
notypic analysis, e.g. GWAS or QTL (Section 4), can pro-
vide strong evidence for candidate casual genes under
selection linked with the association of specific traits
of interest (Hayes et al, 2008; Szmatota et al., 2016).
However, these metrics are still unknown for the main
species of insects as food and feed despite available
genomic resources.

Lastly, structural variants have significant potential
to influence phenotypic differences across populations
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or strains by locally suppressing recombination. What
may appear as regions of the genome diverging due to
selection could, in fact, be influenced or driven by struc-
tural constraints. In this context, the vinegar fly is a
prime example of how substantially structural genomic
variation can shape adaptation processes (Kapun et al.,
2023), which could be relevant in farming contexts, as
known from conventional livestock (Liang et al., 2024;
Yang et al., 2024).

4 Quantitative genetics

Most traits of importance for production and fitness
(e.g. crude weight, growth rates, nutrient composi-
tion, feed conversion efficiency, egg clutch sizes, etc.)
are multifactorial and complex quantitative traits con-
trolled by multiple genes, the environment, and inter-
actions between genotype and environment. Hence,
phenotypic values of quantitative traits are often con-
tinuous, and follow a normal distribution with a specific
mean and variance. This variance can be exploited by
selecting and mating the best-performing individuals
with each other, thereby shifting the population mean
in a desirable direction over successive generations.
Which traits are relevant is determined by the require-
ments from production systems and society. A breed-
ing programme aims at genetically improving traits of
interest through breeding, preferably avoiding negative
effects on other important fitness or production traits at
the population level. The expected response to selection
(R) is represented by the breeder’s equation; R = A%S,
which depends on the heritability of the trait (h*) (see
Section 4: Estimating genetic parameters), and the dif-
ference between the mean of the selected individuals
and mean of the population (selection differential, S)
(Figure 3) (Hansen et al., 2024b). These parameters are
dependent on the amount of genetic variation present
in the population, the accuracy of breeding values (esti-
mated genetic potential of individual), and the selection
intensity. In this section, we discuss the main parts
required to set up a breeding programme to exploit
genetic variation in quantitative traits for selection in
production insects.

Breeding objectives

To construct and implement a sustainable breeding
programme, some practical considerations include the
choice or establishment of the (sub-)population to be
improved (see Section 4: Monitoring and managing
genetic diversity), the production system the animals
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represents the selection differential (S).

FIGURE 3

will exist in, and the overarching goal of the breed-
ing and selection activities (with all these steps being
dependent on one another). Insect performance is
impacted by the environment, including both exter-
nal environmental factors as well as, to a larger extent,
factors inherent to the production system. Insect pro-
duction systems can vary hugely in size and complexity,
from single-batch, single-substrate systems to systems
using multiple different substrate streams across indi-
vidual life stages and/or generations of the animal.
Nonetheless, most production systems can be defined
within the parameters of the following key components:
(i) the insects themselves (including community aspects
such as density, sex ratio, and the genetic makeup
of the population); (ii) the physical environment; (iii)
fixed resources; (iv) economics; and (v) management.
Once the production system for the breeding popula-
tion has been described, the next step towards sustain-
able genetic improvement is the clear definition of a
breeding goal. Having a defined breeding goal is a firm
prerequisite of any breeding programme as it allows
for the inclusion of several biological traits into one
expression of breeding worth and thus, enables progress
in selection (Nielsen et al., 2014). Due to the variable
nature of insect production systems, the definition of
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one central breeding goal is difficult to achieve. Breed-
ing goals can either be descriptive with a set of ideal trait
descriptions, or mathematical expressions of the ideal
individual with each trait weighted based on perceived
(or measured) economic value, as has been exemplified
in BSF (Zaalberg et al., 2024). Although breeding goals
are often mixed in large livestock, farmed insects have a
much higher potential for clear breeding goals entirely
limited to measurable traits. This is a crucial benefit that
can off-set difficulties in e.g. measuring the performance
of individual insects.

Relevant traits in a breeding goal for insects for food
and feed typically include fertility, reproductive traits,
growth, larval and pupal developmental time, and lar-
val and pupal survival and pupation rates. These are
traits that enhance production efficiency by optimis-
ing output with minimal input, reducing time to har-
vest, and contributing to profitability and sustainability.
The traits included in the breeding goals also depend
on market requirements, where body composition traits
become relevant to produce insect oil and insect meal,
or even fatty acid and amino acid profiles. Furthermore,
traits like disease resistance or resilience could become
important to maintain healthy and productive popula-
tions in the future.

Information collection

Identification systems

A selection of target traits is defined based on the breed-
ing goal, and relevant information on the traits need
to be collected to make selection decisions. For most
selection strategies, pedigree recording is an essential
part of information collection. To record the pedigree,
a unique individual identification system is essential,
as it allows recording of information in a mass rear-
ing environment. Dust, dyes, and mutilation marking,
have been widely applied in insect studies (Hagler and
Jackson, 2001), which allows tracking of individuals or
groups at a given time in their life cycle. The challenge
arises when an individual moults and the exoskele-
ton is shed along with any physical identifiers, and
when holometabolous insects go through metamorpho-
sis, complicating the tracking of individuals over an
extended period. Consequently, tracking through iso-
lated or grouped rearing has been the method of choice
in insect breeding so far. Individuals can be reared indi-
vidually in a small, labelled cup, which allows individual
selection (see Section 4: Selection). Alternatively, groups
of siblings can be reared in small containers to perform
family-based selection. Isolated rearing of breeding ani-
mals can introduce differences in performance between
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the breeding and production population (see Section 4:
Genotype-by-environment interactions) and introduces
confounding between genetic and environmental influ-
ences on trait variance (see Section 4: Environmental
variance).

Phenotyping

A major bottleneck in insect breeding schemes includes
obtaining sufficient phenotypic records for accurate
selection (e.g. Klein, 1974). The short life cycle of many
production insects complicates trait recording on all
individuals and evaluation within available timeframes
and poses requirements for phenotyping throughput,
labour, and space. Additionally, random measurement
errors will lead to poor reproducibility of the pheno-
type, leading to less successful genetic improvement of
the trait. Development of high-throughput automated
phenotyping methods using computer vision, sensors,
and machine learning to predict phenotypes automati-
cally could enhance phenotyping capacity and accuracy
(Nawoya et al., 2024) and allow phenotyping of a suf-
ficient number of individuals for selection in a timely
manner for a range of relevant traits, such as body size
(Laursen et al., 2021) and protein content (Cruz-Tirado
et al., 2023). Moreover, sex identification is not always
possible in juvenile insects, imposing requirements of
isolated rearing from phenotyping until selection for
mating. Promising developments in e.g. computer vision
to identify sex at the larval stage in BSF (Nawoya et al.,
2025) could support direct selection after juvenile phe-
notyping.

Phenotypes can be collected on selection candidates
themselves; named own performance, or can be col-
lected on family members, such as sibs or offspring.
Data collection on offspring to evaluate parent perfor-
mance, so called progeny testing, requires overlapping
generations, hence is not suitable for insect species with
discrete generations. Data collection on sibs can easily
be exploited in insects and is of additional interest for
recording complex traits that require sacrificing of indi-
viduals, such as detailed body composition (Bouwman
et al., 2024). Besides measures on individuals, group
records can be utilised to obtain information on many
groups while sacrificing some within-group information
(e.g. Adamaki-Sotiraki et al., 2023; Scieuzo et al., 2023).

Genotyping

Genotypes can be a useful information source in insect
breeding (Eriksson and Picard, 2021) (Section 2). The
advancement in genotyping technology has increased
the availability of genomic data that can be used to
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reconstruct pedigrees, correct pedigree errors, or iden-
tify previously unidentified familial relatives. Genomic
information can also be used to evaluate the level of
inbreeding in the population for breeding management
purposes. Last, genotyping phenotyped individuals is
required to establish a reference population for genomic
selection (see Section 4: Selection), to detect regions in
the genome associated with the trait of interest, and
to determine the genetic architecture of the trait (Xia,
2020) (see Section 4: Genetic architecture of quantita-
tive traits).

Genetic architecture of quantitative traits

To elucidate the genomic architecture of quantitative
traits, loci in the genome that affect the traits can be
identified. These loci are called quantitative trait loci or
QTLs. Once identified, genomic markers associated with
the trait of interest could be used for marker assisted
selection (see Section 4: Selection criterion). In insects,
the vinegar fly has been the model species to study
genetic architecture (Flatt, 2020; Mackay, 2004). Medi-
cally and agriculturally important QTLs have been iden-
tified and mapped in insect pests (Behura, 2006), the
silkworm (Lu et al., 2004) and the honeybee (Guichard
et al., 2021), and extending such studies to other farmed
insect species should be relatively straightforward. Iden-
tifying naturally segregating loci that affect quantitative
traits can be done using QTL mapping based on linkage,
genome-wide association studies (GWAS), or by evolve
and resequencing studies.

QTL mapping via linkage analysis

In QTL mapping, phenotypes and marker genotypes are
combined from a cross between two strains that dif-
fer with respect to one or more traits. Genomic regions
between markers highly associated with the trait in the
offspring of the cross can be identified as the QTL under-
lying these trait differences (Heckel, 2003). A linkage
map of the markers needs to be available. A common
method for QTL mapping in the vinegar fly is creating
recombinant inbred lines (RILs) (Mackay, 2010). Such
lines are created by inbreeding the second generation
of a cross between two lines, which allows associating
phenotypes to QTLs. The downside of QTL mapping via
linkage analysis is that only sites that show allelic dif-
ferences between the two parental lines can be detected
(Mackay, 2001), and that the genomic regions identified
are usually rather broad and require additional testing
to fine map the region (Mackay, 2010). An alternative
is therefore association testing using genome-wide SNPs
in linkage disequilibrium with the causal loci.
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Genome-wide association

In GWAS, a large population of phenotyped and geno-
typed individuals can be used to estimate the effect of
each genotype marker on the phenotype, possibly lead-
ing to candidate causal variants or genes. For GWAS,
it is important to have sufficient power to detect asso-
ciations, which depends on the trait’s heritability, its
genetic architecture, and the sample size. The set of
sampled individuals should ideally be unrelated and
contain several hundreds to thousands of individuals.
GWAS data is commonly analysed with linear mixed
models to estimate effects of each SNP. The inclusion
of a relationship matrix accounts for spurious associa-
tion due to family structure or population stratification
(Price et al., 2010; Sahana et al., 2023). Alternatively, the
principal components from the genotype data can be
used to correct for population structure (Price et al.,
2010; Sahana et al., 2023). As each SNP is tested indi-
vidually, a correction for multiple testing needs to be
applied to avoid false positive associations (Lander and
Kruglyak, 1995). For example, a Bonferroni threshold (a
| #SNPs) or false discovery rate threshold (Benjamini
and Hochberg, 1995; Storey and Tibshirani, 2003) can
be applied. Examples of GWAS in insects can be found
in Hull et al. (2024) and Xia (2020). With the advance-
ment of SNP arrays for insects for food and feed GWAS
will become much easier to perform.

Evolve and resequencing

In evolve and resequencing studies, the genome of
(pools of) individuals from a base population is com-
pared to the genome of (pools of) individuals from a
line split off from that base population that has under-
gone artificial selection, to identify genomic responses.
The response to selection can be observed by comparing
allele frequency differences between the base popula-
tion and the selected line to identify selection signatures
as reviewed in Schlotterer et al. (2015) and Turner et al.
(2011). Multiple replicates under the same conditions,
either in the same or in opposite direction, can con-
firm responsive alleles related to the selection criteria
(Schlotterer et al., 2015; Turner et al., 2011). The advance-
ment of high-throughput sequencing techniques (Sec-
tion 2) combined with reduced cost for resequencing,
and the possibility to use pooled samples to identify
allele frequencies of each line and its base has made this
an attractive method in insect species with short gener-
ation intervals (Generalovic et al., 2025b).
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Genetic parameters

Efficient genetic improvement requires an understand-
ing of how much of the phenotypic variation observed is
attributable to genetic (i.e. heritability) and how much
to environmental factors. This information is essential
for an accurate breeding value estimation as well as
for developing an efficient breeding objective. Before
any systematic selective breeding can be initiated, the
major variance components and genetic parameters of
the traits in the breeding goal need to be estimated.

The use of linear mixed models with Restricted Max-
imum Likelihood (REML), correcting for all systematic
effects, including all available information from lineal
and collateral relatives and a residual term as random
effects, allows for estimation of additive genetic (¢2) and
residual (0?) variance (see the next three paragraphs).
The model typically includes the random animal effect
(the additive genetic effect) and can be extended with
additional random effects, such as those originating
from common environment or maternal genetics. Other
covariates can be included, such as other recorded traits
to include their effect on the trait of interest, or the
inbreeding coefficient to evaluate the inbreeding effect
on performance (Paul et al, 2022). The phenotypic
records can be individual or group records, where the
use of group records for genetic parameter estimation
and genetic evaluation naturally has consequences for
the accuracy of estimates (Hansen et al., 2025; Olson et
al., 2006).

Additive genetic variance

In breeding, the major variance component of interest
originates from differences in additive genetics between
individuals in the population, as offspring will directly
inherit only the additive genetic effects from their par-
ents. Estimating the additive genetic variance requires
relatedness information to build a relationship matrix.
Until now, the proportion of phenotypic variance in pro-
duction traits made up of additive genetic variance has
been estimated in farmed insects based on parent/off-
spring or full/half sibling records. Examples include
traits in the house cricket (Castillo, 2005; Ryder and
Siva-Jothy, 2001), desert locust (Chapuis et al., 2021), yel-
low mealworm (Morales-Ramos et al., 2022; Prokkola et
al., 2013; Sellem et al., 2024), house fly (Boatta et al.,
2023; Hansen et al., 2024a), and BSF (Bouwman et al.,
2022; Generalovic et al., 2025a). Molecular data (e.g.
SNPs) is being increasingly used to infer the genetic rela-
tionship between individuals in a population, which in
turn is used to estimate the additive genetic variance if

JOURNAL OF INSECTS AS FOOD AND FEED 0 (2025) 1-59

23

phenotypic data is also known (Srivastava et al., 2023),
as exemplified in BSF (Hull et al., 2024).

Indirect genetic variance

Indirect genetic effects can represent an additional
source of phenotypic variation. An example is mater-
nal genetic effects, the genetic value of the mother’s
genome for her offspring’s phenotype. In insects, mater-
nal genetic effects have been primarily studied in honey-
bees (Brascamp and Bijma, 2014), but have not yet been
thoroughly evaluated in insects produced for food and
feed. The estimation of maternal genetic effects requires
identity information of the mother of the phenotyped
offspring. When variance components are derived using
full-sib families, the maternal genetic effect is con-
founded with additive as well as common and mater-
nal environmental effects. Genomic instead of pedigree
data can help disentangling the confoundment (Lee et
al., 2010). Grouped animals are also affected by social
indirect genetic effects, ie. the effect of the genetic
value of an individual on phenotypes of others in the
group. Social indirect genetic effects were shown to
influence female choice and aggressiveness in crickets
(Bailey and Zuk, 2012; Santostefano et al., 2017), mat-
ing rate in the burying beetle (Nicrophorus vespilloides)
(Carter et al., 2019), and position within a social net-
work and locomotion in the vinegar fly (Signor et al.,
2017; Wice and Saltz, 2023). Studying and quantifying
indirect genetic effects includes recording phenotypes
of individuals from genetically diverse groups, which
requires a system to identify individuals from different
genetic backgrounds in a group (Ellen et al., 2016).

Environmental variance

Environmental effects can be major sources of pheno-
typic variation and need to be properly accounted for
when estimating genetic parameters and breeding val-
ues. Although production insects can be reared in con-
trolled environments, common environmental effects
can cause animals reared in the same container to per-
form more similar. When families are reared in the same
container, the common environmental effect can only
be disentangled from the additive genetic effect by split-
ting family groups over multiple environments (i.e. con-
tainers) (Bouwman et al, 2022; Hansen et al., 2024a).
The confounding between additive genetic and com-
mon environmental components can also be disentan-
gled by increasing genetic connectedness between man-
agement units such as families reared in separate con-
tainers (Kuehn et al.,, 2007; Yu et al., 2017). Genetic con-
nectedness can be increased with repetitive use of one
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parent with multiple mates, or by identifying unknown
relatives with either more meticulous pedigree keep-
ing or by using genomic data retrospectively. Addition-
ally, maternal environmental effects, defined as the non-
genetic contribution of females to their offspring’s phe-
notype (Reznick, 1991), have been shown to affect the
number and size of eggs, sex ratio, developmental time,
growth rate, etc., in insects (Mousseau and Dingle, 1991).
To estimate the maternal environmental effect it would
be necessary to mix offspring across different mothers
and environments. However, for genetic improvement,
the priority is to separate additive genetic and environ-
mental components, whereas it is less critical to differ-
entiate various sources of environmental variance from
one another.

Estimating genetic parameters

(1) Heritability: The evolvability of a trait is depen-
dent on the extent of phenotypic variance that
can be explained by additive genetic variance in
a given population in a particular environment,
i.e. the narrow-sense heritability (h?) of a trait
(Falconer and MacKay, 1996). The heritability is

%

estimated as -. Fitness traits, such as fertility,

clutch size, oraflaaetchability, commonly have very
low heritabilities. On the other hand, non-vital
morphological traits often exhibit high heritabili-
ties, indicating significant underlying genetic vari-
ation (Mousseau and Roff, 1987). An overview of
studies reporting estimates of h* for a range of
traits in insects farmed for food and feed can be
found in (Hansen et al., 2024b).

(2) Correlation: Using multivariate mixed models to
obtain estimates of trait covariances, the genetic

and phenotypic correlation between two or more
cov(xy)

traits can be estimated as where x and y

a?af,
are either phenotypic or genetic values of the two
traits. The traits need to be measured on related
or preferably the same individuals but could also
be on half or full siblings. Correlating traits at e.g.
full-sib family level, using group sums or averages
as the phenotype, enables estimation of correla-
tions without maintaining information at the indi-
vidual level over time (e.g. Hansen et al., 2024a).
Estimates can be improved if a group record of
one trait is correlated to individual records of
another (Ma et al., 2021), for example by maintain-
ing individual-level information at the adult stage.
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Selection

Selection criterion

Selection of the best individuals as parents of the next
generation can be based on several criteria. Until now,
genetic improvement in insects produced as food and
feed has primarily been done by selection on pheno-
typic performance of an individual itself, or through
environment-induced selection using experimental evo-
lution. Another strategy is to select individuals based on
estimated breeding values (EBVs) that capture only the
genetic part of the phenotypic value.

Phenotypes

The simplest form of selection is selection on the
observed phenotype, commonly known as mass selec-
tion or phenotypic selection. Phenotypic selection does
not require any relatedness information and is thus
straightforward to implement in insects (Facchini et al.,
2022; Ma et al., 2024; Slagboom et al., 2024; Song et al.,
2022). Using phenotypes challenges multi-trait selec-
tion, because some traits are tightly integrated through
genetic mechanisms, and selection on one trait might
result in undesired responses in another (correlated
responses) (e.g. Armitage and Siva-Jothy, 2005; Flatt,
2020). Additionally, some trait recordings require sac-
rificing the individual, rendering phenotypic selection
only possible when selection is on directly observable
traits. Although random mating should prevent high
levels of inbreeding, insects usually have large full-sib
family structures, hence phenotypic selection runs the
risk of increasing inbreeding as relatives are more likely
to perform well and be co-selected in a given environ-
ment.

Pedigree-based breeding values

Breeding values (BVs) reflect the average performance
of the progeny of an individual expressed as (twice)
their deviation from the population average perfor-
mance. Prediction of BVs requires phenotypic informa-
tion, a relationship matrix, and estimates of variance
components. BV estimation uses linear mixed models
and is most commonly done using Best Linear Unbi-
ased Prediction (BLUP) (Henderson, 1950). Estimates
of the fixed effects (Best Linear Unbiased Estimates,
BLUE) provide valuable knowledge about the system-
atic variables that are constant across individuals, such
as sex, age, or treatment group, and can be used to make
informed decisions on management. Simultaneously,
these effects are separated from the genetic effects that
are of primary interest in selective breeding. BLUPs are
estimated for all random effects, which would include
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the additive genetic effect (either from individuals or
their parents), and other variables which are not con-
stant for all individuals, such as common environment
effects. Selection on EBVs allows multi-trait selection
schemes where covariance between traits are accounted
for. Furthermore, weights, either arbitrary or based on
economic importance (Zaalberg et al., 2024), can be
placed on each trait to compute a combined EBV for
a group or an individual. Maintaining information on
individual phenotypes in a multigenerational pedigree
poses profound challenges in insect populations. Short
and discrete generations imply obtaining and maintain-
ing phenotypic and relatedness information in large
quantities and computing EBVs before selection deci-
sions can be made, which, for some species, could
be just a few days. Re-identifying selection candidates
when EBVs have been computed once again circles back
to the challenge of tracking insects over time. If rearing
full sibs in isolated groups is feasible, family EBVs can be
used as the selection criterion (e.g. Hansen et al., 2025).

Genomic breeding values

Alternatively, EBVs can be predicted using genomic
data, for example marker assisted selection (MAS) (Fer-
nando and Grossman, 1989). In MAS, the selection cri-
terion is based on identifying the genotype at mark-
ers which are in linkage disequilibrium with candidate
or known causal loci (QTLs; see Section 4: Genetic
architecture of quantitative traits). However, a signifi-
cant limitation of MAS is the lack of comprehensive
knowledge of QTLs for traits of interest, or the fact
that the markers used may only account for a mini-
mal proportion of the genetic variance associated with
these traits (Collard and Mackill, 2008). A step fur-
ther is predicting EBVs using high density genomic
markers, called genomic BLUP (GBLUP) (Meuwissen et
al., 2001). In GBLUP, the relationship matrix is con-
structed using only genomic data. GBLUP requires a ref-
erence population of phenotyped and genotyped indi-
viduals. Having this population, one can predict EBVs of
unphenotyped animals based on their genotypes with
higher accuracy than in the pedigree model (Schaef-
fer, 2006). Accuracy of genomic prediction decreases
with increasing distance between reference and tar-
get population, wherefore frequent update of the ref-
erence population is crucial to maintain high accu-
racy (Pszczola et al, 2012), especially in insects with
quick generation turnaround. The use of genotypes
for EBV prediction in insects is still limited, however,
there have been some attempts. Genomic prediction has
been performed in honeybees (Bernstein et al., 2023)
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and a proof-of-principle study was done in the para-
sitoid wasp Nasonia vitripennis, showing its potential
and highlighting considerations for practical applica-
tion of genomic prediction in insects (Xia et al., 2024).
Although accuracies of these predictions did not reach
accuracies observed in traditional livestock, both have
shown a positive effect of including genomic data in
predicting EBVs for insects. Additionally, the prediction
can be strengthened by the combined use of pedigree
and genomic data in the so called single-step GBLUP
(Aguilar et al., 2010; Legarra et al., 2009).

Selection scheme

The selection strategy is often chosen based on the unit
for which information is acquired. Phenotypic selection
(Facchini et al., 2022; Morales-Ramos et al., 2019) and
selection on individual EBVs are fitting for scenarios
where the available information is collected on individ-
uals, or where individuals are units that can be selected
independently. When information is collected on fam-
ilies, e.g. full-sibling groups, family-based selection is
a fitting strategy. This holds especially for insects, as
keeping family phenotype and pedigree information is
easier than collecting individual information. Two types
of family-based selection include between-family selec-
tion and within-family selection, but a combination of
the two can also be applied (Hansen, 2024). Between-
family selection selects the best performing families to
produce the next generation. Although easy to imple-
ment, it requires starting with a large number of fami-
lies (>100) as in every generation families are excluded
from breeding and hence inbreeding increases rapidly.
Within-family selection maintains the number of fami-
lies and selects the best individuals within each family
to generate the next generation.

If information can only be collected on siblings
due to phenotyping being invasive or sex-specific, sib-
selection is an appropriate strategy. In advanced breed-
ing programmes, several selection methods and selec-
tion rounds can be combined, which is advantageous
when the breeding goal includes an array of traits with
different requirements for phenotyping (invasiveness,
life-stage, sexual dimorphism). The selection criterion
depends on whether relatedness information is col-
lected (EBVs) or not (phenotypes). Multi-trait breeding
can also be accomplished by selecting different lines on
different single-trait breeding goals and ultimately cross
them to obtain crossbred offspring which outperform
the parental average (Meyermans et al., 2025). Other
strategies, which have not been formally investigated in
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production insects, include progeny selection and opti-
mum contribution selection.

Finally, if information includes genotypes, genomic
selection can be applied. This strategy allows for selec-
tion of juveniles even before they express the pheno-
types or even if they do not express the phenotype
(sex-specific trait). The main benefit of genomic selec-
tion in livestock arises from the shortened generation
interval. This is of limited value in insect populations
that already have short generation intervals and could
even complicate the recording of sufficient informa-
tion before selection decisions. The main benefit of
genomic selection in insects might come from identi-
fying genetic relatedness and increasing accuracy for
hard- or expensive-to-measure traits, traits with low her-
itability, and traits that are expressed later in the ani-
mal’s life, since they only need to be measured on the
reference population (Calus et al., 2013), similar to the
situation in poultry (Wolc et al., 2016) and aquaculture
(Castillo-Juarez et al., 2015; Lillehammer et al., 2020; Luo
et al., 2022). For most insects, getting sufficient DNA for
genotyping is generally done by sacrificing the individ-
ual, although less invasive approaches might be applica-
ble (Section 2, e.g. Bubnic et al. (2020)). If sacrificed, the
individual is then no longer available as a selection can-
didate to produce the next generation, and if damaged
its suitability as a parent could be compromised; how-
ever, its DNA could be of value to predict the genetic
merit of its full siblings.

Mating design

The choice of selection scheme and production method
is highly dependent on the species’ mating system
(monogamy, polygyny, polyandry) that supports differ-
ent pedigree structures (full-sib families, maternal- or
paternal half-sib families) and enables different mating
designs (controlled-pair mating, familial group mating,
random group mating). Recent studies have investigated
the possibilities of utilising different mating designs in
different production insects (Hansen et al., 2024a; Hoff-
mann et al, 2021; Laursen et al., 2024) and unveiled
how those might differ between wild and captive rearing
environments (Jensen et al., 2025). Mating designs are
frequently used to not only optimise genetic improve-
ment, but also to limit inbreeding (Slagboom et al.,
2024). When rearing is done in random batches, rotat-
ing batches over each other at the time of mating in
every generation can be used to mitigate inbreeding. In
the case of family selection, males can be rotated over
different families. If a high degree of mating control is
achievable, optimum contribution selection (OCS) can
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be employed. OCS maximises the mean breeding value
in the offspring while controlling the rate of inbreeding
by optimising individuals’/families’ contribution and
constraining the increase in mean kinship in the breed-
ing population (Meuwissen, 1997). Another approach
would be to minimise the increase in mean inbreed-
ing of the population with a fixed constraint on the
desired genetic progress (Colleau and Moureaux, 2006)
which has already been applied in trout and insects. The
final combination of information source, selection cri-
terion, and selection strategy are thus dependent on the
possibility to control the mating strategy and mating
conditions (e.g. isolated mating pairs). As knowledge
is sparse, research efforts for different farmed insects
will be valuable for the development of species-specific
insect breeding schemes.

Experimental evolution
Experimental evolution intends to change an organism’s
trait of interest by applying an environmental selective
regime under controlled conditions and is particularly
convenient in organisms with short generation inter-
vals, such as insects. Adaptive evolution may occur by
new mutations in individuals or by a change in the
population’s allele frequency. The speed and effect size
of the adaptive process depends on the experimen-
tal population’s initial genetic variation, the number
of generations, and the strength of selection. “Exper-
imental evolution” in a narrow sense is the adaptive
response of a population under controlled laboratory
or field conditions to an applied selective environment.
In a broader sense, it includes more controlled forms
of artificial selection based on selecting specific individ-
uals that most strongly express the trait of interest for
breeding the next generation (Kawecki et al., 2012). One
major advantage of having an experimental population
evolving is that tracking individual phenotypes every
generation is bypassed by scoring phenotypes after sev-
eral generations (e.g. Gligorescu et al., 2023). This also
spares data collection on relatedness between individ-
uals to construct relationship matrices. Consequently,
this approach sacrifices the ability to deliberately select
on specific phenotypes while accounting for trait cor-
relations, track population inbreeding, and, in some
cases, control selection intensity. Another, more recent,
approach is to use whole genome sequencing to com-
pare individuals from evolved versus control popula-
tions, which permits to identify genomic loci respond-
ing to adaption.

Important aspects when setting up experimental evo-
lution studies include replication of starting popula-
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tions to control for stochastic processes and possibly
alternative evolutionary responses, including genetic
redundancy (Generalovic ef al., 2025b). Control popu-
lations that are not subjected to the applied selection
regime need to be set up simultaneously to control for
allele frequency changes independent of the selective
pressure, such as domestication effects and genetic drift
(e.g. Hull et al., 2024). The starting population requires
sufficient standing genetic variation for the trait of
interest. This can be accomplished by mixing several
field-collected populations prior to the selection exper-
iment. However, this may bear disadvantages through
outbreeding depression that breaks up co-adapted gene
complexes (Frankham et al., 2011). Population size is
another important factor, specifically the number of
individuals contributing to the next generation (N,, see
Section 3: Effective population size and Section 4: Mon-
itoring and managing genetic diversity). A final factor
to consider is the number of generations. A response to
selection is sometimes already visible after 5-10 genera-
tions in experimental insect populations, but it may also
require longer (Lirakis and Magalhdes, 2019).

An important question is whether a selected trait is
maintained in commercial mass rearing conditions. Not
only may the mass rearing conditions cause relaxation
of selective pressure applied in the laboratory, but it may
also trigger other adaptive responses that interfere with
the selected trait. Due to limited studies that applied
experimental evolution to insects for food and feed (but
see Boatta et al., 2024), information remains scarce.

Genotype-by-environment interactions

Genotype-by-environment interactions (G x E) occur
when different genotypes (e.g. populations, groups of
relatives) respond to environmental variation (abiotic
factors, diet, microbiota, scale, etc.) in different ways,
i.e. when trait expression depends on which genotype
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is evaluated in which environment (Figure 4) (e.g. San-
drock et al., 2022). Two types of G x E can be distin-
guished (Falconer and MacKay, 1996): (i) crossover G x
E, where genotypes can change ranking between envi-
ronments (Figure 4C); (ii) non-crossover G x E, where
genotypes retain ranking, but the differences are larger
in one environment compared to another (Figure 4B),
or a combination of both. G x E can reduce efficiency of
selection when exchanging individuals across environ-
ments since it implies that genotypes differ in genetic
potential to adapt to different environments (Falconer
and MacKay, 1996). This is especially true for the case
of reranking, where there is no single superior genotype
across environments, and hence selection in one envi-
ronment will lead to a lower genetic gain than expected
in another. In addition, under G x E, not only mean per-
formance of a given genotype may change depending
on environment, but also respective variances, which
holds equal importance for consistency in production
(Laursen et al., 2024).

G x E interactions have been widely demonstrated
being a key driver in evolutionary ecology, with plenty of
examples in entomology research (Gamboa and Watan-
abe, 2019; Sandrock et al., 2010; Santos et al., 1994), con-
ventional livestock (e.g. Fodor et al., 2023; Wackchaure
et al., 2016) and aquaculture (e.g. Sae-Lim et al., 2016).
Well-characterised examples are known from insect
models such as the honeybee (Costa et al., 2012), or the
vinegar fly, including a plethora of life history traits and
metabolic phenotypes (Flatt, 2020; Reed et al.,, 2010).
Several available studies suggest this aspect is also rel-
evant in insects for food and feed (Generalovic ef al,
2025a; Greenwood et al., 2021; Laursen et al., 2024; San-
drock et al., 2022; Silvaraju et al., 2024; Zhang et al,
2024).

Two major types of models are used to study G x
E interactions: multi trait model (MTM) and reaction
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norm model (RNM). The multi trait model is mostly
used when few categorically classified environments are
studied. The phenotypic performance of the studied
genotype recorded in different environments are con-
sidered as a separate, but potentially correlated traits
(Falconer, 1952). The reaction norm model uses a con-
tinuous variable to describe environments that allows
to classify genotypes in this gradient and to identify
environmental factors causing G x E (Hayes et al., 2016;
Sae-Lim et al., 2016).

Awareness of the presence and the extent of G x E is
key, for ensuring selection response. If not accounted
for, performance and reproductive fitness cannot be
predicted for any production setting that differs from
the selection regime of the nucleus population (Mul-
der and Bijma, 2005). In insects, the main challenge are
thus environmental differences within the nucleus pop-
ulation compared to rearing conditions on production
farms, e.g. including climate control, diet quality and
provision, insect density, etc. Moreover, in evolutionary
diverse taxa like the BSF where mitochondrial haplo-
types comprise substantial coding differences (Guilliet
et al., 2022), complex interactive effects of diet and
mitonuclear epistatis may be involved, as shown in the
vinegar fly (Mossman et al., 2016).

Monitoring and managing genetic diversity
Establishing a breeding population

Insect species farmed for food and feed generally lack
a long history of domestication or closed captive rear-
ing, with few exceptions. As a result, well-characterised
breeds, strains, or lines that are specifically adapted
or bred for particular purposes are not readily avail-
able and must be established. The establishment of a
breeding population begins with the careful selection
of founder individuals that can be (i) initiated from
an already commercially farmed population; (ii) col-
lected from wild populations; or (iii) created from a
combination of wild and/or captive origins; and it con-
tinues with a stringent monitoring of its population
genetic structure. Establishing a large breeding popu-
lation that encompasses high genetic variation is more
likely to capture diversity that can be leveraged in breed-
ing while simultaneously reducing the risk of stochastic
loss of genetic variants (Frankham, 2005). Conversely,
reproductive success within the founder population is
equally important to prevent bottlenecks and resulting
founder effects. To mitigate this risk, it is essential to
avoid assortative mating among founders, which does
not seem to be relevant in genetically uniform popu-
lations (Laudani et al, 2024) yet appears to become
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relevant when crossbreeding substantially differenti-
ated subpopulations (Hoffmann et al., 2021; Kaya et al.,
2021). Despite an absence of general recommendations
regarding the census and effective population size of
farmed insect populations, guidelines for effective pop-
ulation size in livestock generally suggest a low range of
50-100 (Woolliams et al., 1998). To maintain the evolu-
tionary potential, an effective population size of >5000
could be needed (Franklin and Frankham, 1998) which
would entail a census population size above this num-
ber.

Maintaining genetic diversity

Long-term genetic improvement depends not only on
the establishment of diverse populations, but equally
on maintaining genetic variation to improve popula-
tions’ robustness and production. Captive, isolated pop-
ulations are at risk of genetic erosion due to average
relationship between individuals increasing every gen-
eration. The life-history characteristics of many insect
species, including short life cycles, high fecundity, high
juvenile mortalities, large variances in family size, and
skewed progeny contributions, renders them particu-
larly susceptible to drastic fluctuations in population
size. This, combined with inbreeding, results in an
increase in homozygosity that reduces genetic varia-
tion over generations. Increased inbreeding can lead to
inbreeding depression, decreasing the phenotypic value
for fitness and possibly other economically important
traits (Hedrick and Garcia-Dorado, 2016; Leung et al.,
2025; Woodworth et al., 2002). Increasing homozygos-
ity further causes the loss of variability for currently
neutral traits that can become economically important
in the future (Meuwissen et al., 2020). Primary strate-
gies for maintaining genetic diversity beyond estab-
lishing a diverse breeding population and ensuring
high effective population size entail: (i) Managing the
rate of inbreeding below 1% per generation (Bentsen
and Olesen, 2002) through careful mate choice deci-
sions that minimises mating between relatives. Such
a strategy requires pedigree records or use of molecu-
lar markers (see Section 4: Information collection); and
(ii) Population augmentation, which is the introduc-
tion of unrelated individuals to a population to restore
genetic diversity and counteract the effects of inbreed-
ing depression through outcrossing (Kronenberger et al.,
2018).

Little is known about genetic erosion and effects
of inbreeding in captive insect populations beyond
recent indication of substantial fitness reductions upon
repeated sibling mating (Laudani et al., 2024). Counter
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to livestock breeding experience, insects exhibit many
fold the generational turnover, resulting in rapid loss
of genetic variation (Rhode et al., 2020). Conversely,
insects might tolerate higher levels of inbreeding than
livestock (Cai et al., 2022; Swindell and Bouzat, 2006).
Purging of recessive deleterious alleles through inbreed-
ing could mitigate negative effects of inbreeding depres-
sion (Caballero et al., 2017; Pérez-Pereira et al., 2021).
However, such a management strategy comes with a risk
of population collapse and is not guaranteed to be effi-
cient in small populations (Frankham, 2005). Inbreed-
ing depression can even be environmentally depen-
dent, wherefore purging of deleterious recessives might
only be effective in specific environments (Bijlsma et
al., 1999). The general recommendation is to avoid
inbreeding and maintain high levels of genetic variation
through management practices and continuous moni-
toring and evaluation of the breeding population.

Outbreeding depression

Introducing new genetic material to a breeding popu-
lation is highlighted both as a breeding strategy (cross-
breeding) and as an inbreeding management tool (pop-
ulation augmentation). Such strategies can be beneficial
but must be used with caution. Although they can pos-
itively impact phenotypes through hybrid vigour and
introduction of new genetic variation, they may also
result in the loss of genetic gains achieved through
selective breeding for production traits. Detrimental
loss of fitness in the population due to outbreeding
depression may also be an outcome (Kurbalija et al.,
2010; Peer and Taborsky, 2005), likely due to disruption
of co-adapted gene complexes and/or genomic incom-
patibilities manifesting in the first or later generations
(Edmands and Timmerman, 2003). Intentionally seek-
ing heterosis to enhance fitness or production traits may
be highly sensitive to the parental counterparts involved
in interbreeding. In some insect species, outbreeding
can yield beneficial effects (Singh et al., 2002; Sztics et
al., 2017), while in others, it may have no significant
impact (Fountain et al., 2015; Leung et al., 2025). Com-
plex metapopulation structure with highly diverged
evolutionary lineages or even unrecognised cryptic taxa
(Generalovic et al, 2023; Hagberg et al, 2022) may
indicate possible risks of outbreeding depression. Yet,
prediction thereof solely based on genetic distance is
difficult. While neutral genetic drift can have strong
impact on genome-wide differentiation (Cai et al,
2024), the segregation of non-recombining structural
genomic variations was indeed shown to mediate and
maintain insect ecotype differentiation through envi-
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ronmental adaptation (Kapun et al., 2023). Hence, the
effect, whether positive or negative, on desired traits or
fitness when employing crossbreeding is likely source
and context dependent. Consequently, unmonitored
interbreeding intended to randomly increase genetic
diversity may lead to counterintuitive unwanted con-
sequences for fitness in the short term and ultimately
affect the population’s genetic makeup in the long term.

Protecting wild populations

The existence of wild alongside managed populations
of several farmed insect species calls for an increased
awareness for conservation genetics responsibilities.
Although there are regional differences in regulating
insect productions, as well as in motivations for their
implementation, the insect production sector should
develop strategies to safeguard the integrity of local
wild populations across both indigenous and non-native
ranges. This will warrant the preservation of unique
genetic profiles for future breeding purposes. For the
same reason, continuous monitoring of introgression
from insect farms into the wild is recommended to eval-
uate and trace regional invasion potentials (Bang and
Courchamp, 2021). Even if largely maladapted under
natural selection, introgression from strains selected
in mass-rearing contexts has the potential to change
life history traits of wild populations possibly broad-
ening capacities for ecological adaptation (Beaurepaire
et al., 2024; San Jose et al, 2023). Invasiveness could
significantly destabilise natural ecosystems and worsen
public perception of insect farming (Lourenco et al.,
2022). Such unwanted developments need to be proac-
tively prevented. Possible strategies beyond physical
containment and geographical isolation include genetic
monitoring of both farmed strains and wild popula-
tions, reproductive control through genetic modifica-
tions, selective breeding for low fitness in the wild, as
well as development of industry guidelines to minimise
escapes and ensure responsible management practices
across the sector.

5 Functional genetics

Functional genetics refers to the study of the genetic
architecture of organismal variation. Technological de-
velopments have facilitated the transition from tar-
geted studies on few genetic markers to applying whole
genome scans. The focus in the context of breeding
insects for food and feed is to identify biological rela-
tionship between genes (and variants) and phenotypes
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of interest, such as reproduction, growth, resilience, or
resistance to disease. In its simplest form, variation in
protein coding regions of the DNA sequences lead to
variation in mRNA sequences, which are translated to
the active molecules. Therefore, it is generally expected
that all variation in phenotypic performance is based
on segregating variants of protein coding genes, and
regions that regulate their expression.

For traits with a simple genetic architecture, where
single or few loci with large effect determine the phe-
notype, progress has been made, especially within the
field of human health and disease research (Reed et
al., 2011; Slavkin, 2014). Generally, however, pin-pointing
genes and genetic variants underlying organismal traits
remains difficult. This is partly due to many traits being
highly polygenic and controlled by many genes, each
with a minor effect, but also since phenotypes are
affected by numerous additional (environmental) fac-
tors (Hansen, 2024) (Section 4). Multiple intermedi-
ate processes and specifically interfering factors con-
tribute to the final phenotype. Thus, the direct asso-
ciation between gene variant and trait value is often
hard to identify and predict. The strength or direction
of a genotypic effect on a phenotype often depends on
the environmental condition (see Section 4: Genotype-
by-environment interactions). Recent investigations of
farmed insects have observed differential performance
and composition of different strains based on admin-
istered diets pointing out phenotyping challenges due
to G x E interactions (Generalovic et al.,, 2025a; Glig-
orescu et al., 2023; Greenwood et al., 2021; Sandrock et
al., 2022).

The main mission for functional genomic studies is
to (i) generate biologically meaningful interpretation
of large datasets including genetic/genomic informa-
tion, but also transcriptomic (gene expression) and sim-
ilar large scale ‘omic’ data, and (ii) identify biological
relationships between genetic/genomic variation and
organismal (functional) phenotypic variation. Intricate
knowledge of the biological system being investigated
is required to achieve clear and robust interpretation,
including functional annotation of genes and molec-
ular pathways and a deep understanding of the ecol-
ogy and/or requirements and conditions experienced
by the studied organism (Muchina et al., 2025). In the
following, we discuss applications and achievable goals
of available techniques and highlight common pitfalls.
[lustrated by examples, we provide general recommen-
dations how to apply functional genomic tools.
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Current trends in insect functional genetics/genomics
Currently, functional genomics publications related to
insect farming are heavily skewed towards two com-
mercial species: the yellow mealworm and the Mediter-
ranean field cricket make up over 70% of the literature
pool. This is because they have long been studied as
model organisms for molecular mechanisms of develop-
ment, regeneration, immunity, and host-pathogen inter-
actions, and in part, due to their comparatively easy
rearing in the laboratory (Mito and Noji, 2008; Petronio
Petronio et al., 2022). While research on these organisms
provided a solid foundation of fundamental research,
there has been a shift towards more applied research
aimed at understanding gene function and regulation
that could advance the field of insects as food and feed.
This shift is primarily driven by numerically strongly
increasing literature records on the BSF (Athanassiou
et al., 2025; English et al.,, 2021; Siddiqui et al., 2024),
fuelled by technological developments that allow func-
tional genomic studies and molecular manipulation
with little prior information (Figure 5). While high qual-
ity genomes are still much desired (Oppert et al., 2023),
many studies can be performed as sequencing allows
the de novo construction of annotated genomes and
transcriptomes, permitting targeted RNAi and gene edit-
ing.

Beyond the focus on progress directly on commer-
cially farmed insects, there is a wealth of knowledge
on other model species systems like red flour beetle
(Campbell et al., 2022; Kumar et al., 2018) and vinegar fly
(Mackay and Huang, 2018), which can serve as inspira-
tion for adopting approaches to tackle yet unattempted
work in the target species for food and feed.

Techniques and their applications

The first step in identifying the genetic architecture that
underlies a trait of interest is a choice between investi-
gating associations between genotype (DNA-sequence)
and/or expression level (mRNA abundance) as these
approaches provide different insight. Following the gen-
eration of lists of candidates, these should be inter-
preted via bioinformatics analysis and then functionally
verified. To achieve this, it is also required that accurate
phenotyping is performed to support the analysis. Ide-
ally functional genomic studies include all these steps.

Associating genotype with phenotype

The first step is typically some form of genotype-
phenotype correlation analysis (e.g. QTL mapping or
GWAS, see Section 4: Genetic architecture of quantita-
tive traits) to identify a statistical association. Yet, these
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FIGURE 5

Publications (up to April 2024) related to functional genomic studies done on three groups of commercially farmed insects

(data curated from Web of Science, excluding publications related to insect-fed livestock). Cricket refers to five species
commonly reared for food and feed (Brachytrupes membranaceus, Gryllus assimilis, Gryllus bimaculatus, Gryllotalpa orientalis

and Acheta domesticus).

approaches do not identify the underlying molecular
mechanisms causing the observed phenotypic variation.
QTL mapping studies identify large effect loci which
can then be scanned for genic content. Resolution is
coarse and unlikely to yield unique candidate genes
and gene variants, however, promising candidates can
then be further characterised through analysis of gene
functions and pathways/networks. Re-sequencing these
genes may further highlight DNA sequence variants that
can be explored in candidate gene fine-mapping asso-
ciation studies (e.g. Hull et al, 2024). The impact on
sequence variants (e.g. SNPs and indels) can be investi-
gated through in silico strategies to find, for example, if a
base pair substitution leads to an alteration in amino
acid sequence and peptide folding. Various in silico
approaches have also been developed to find conserved
regulatory elements (e.g. promoter region motifs and
other ‘enhancer’ sequences in the 5- or 3'-untranslated
regions or intron splicing sites).

Gene expression analysis

Transcriptome analyses is a complementary approach
to screen for genes showing expression differences asso-
ciated with a phenotype, providing insights into when
and where mRNA of different genes is accumulated
in an organism (Singh and Verma, 2022). For exam-
ple, the increase in mRNA levels of specific genes in
different tissues of silkworms served to identify and
describe the regulation of silk gland activity (Masuoka
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et al., 2022; Yokoi et al, 2021), while RNA sequenc-
ing (RNAseq) under stress conditions served to link
Dipteran transcriptomics to phenotypes and indicate a
potential role of genes responding to the stressor (de
Oliveira et al., 2021; Hull et al., 2023; Yadav et al., 2017).
Similarly, transcriptional profiling in BSF has proven
useful to explore chemoreception of different develop-
mental stages (Scieuzo et al., 2021) or in a sex-specific
context during mating or oviposition (Xu et al., 2020),
the regulatory basis of nutrient, energy and particularly
lipid metabolism during larval growth stages (Giannetto
et al., 2020; Peng et al., 2023; Sukmak et al., 2024; Zhu et
al., 2019), or specific immune responses (Moretta et al.,
2020; Vogel et al., 2018) that possibly induce production
trade-offs (Shah et al., 2024), as well as gene expression
differentials according to selection for increased growth
(Hull et al., 2023) or temperature tolerance (Ma et al.,
2024). The relevance of gene regulation is illustrated
in the silkworm (Tong et al., 2022) where large parts
(55%) of the structural variation found in pan-genomes
affected regulatory regions. Importantly, transcriptomes
do not necessarily identify causal variants underlying a
change in phenotype — for example alteration in expres-
sion of a transcription factor could affect expression lev-
els of many downstream genes. Therefore, QTL/GWAS
approaches are highly complementary to transcriptome
experiments.

Measuring gene expression via transcription is one
of the most accessible and widely utilised approaches
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for investigating gene function and regulation, with a
wide array of tools from high-throughput RNAseq of
whole transcriptomes (De Wit et al., 2012) to targeted
techniques such as qPCR. Proteins are in most cases
functional molecules and can be measured using West-
ern blots, ELISA, and mass spectrometry-based method-
ology. These approaches do not always produce con-
cordant results, in part because abundance of mRNA
does not necessarily translate to abundance of pro-
teins: abundance does not reveal much about turnover
dynamics (transcription rate, translation rate, degrada-
tion rate). For example, measuring the expression of
vitellogenin, a gene crucial for egg development and
oogenesis, in the yellow mealworm in response to a
molecule secreted by a parasite (Warr et al., 2006)
found significantly higher mRNA abundance in infected
beetles compared to uninfected controls, nevertheless,
associated protein levels were unexpectedly lower.

Given the rapid advancement of sequencing tech-
nologies, differential gene expression studies using
whole transcriptome sequencing (via RNAseq) is the
most common approach. For example, Hull et al. (2023)
used RNAseq to investigate differential gene expres-
sion between selected and unselected lines of BSF to
find genes associated with larval growth. RT-PCR can
be applied to candidates to expand sampling and vali-
date the correlation between transcription and pheno-
type. Measuring gene expression using RT-PCR comes
with substantial technical and biological variation (as
gene expression is extremely sensitive to environmen-
tal conditions). Thus, care must be taken to randomise
and normalise intermediate steps in the procedures, by
investigating and validating reference genes specifically
for each treatment (Gao et al., 2019; Rhode and Green-
wood, 2023) or applying other measures to account for
systematic, technical and random variance (Heckmann
et al., 2011).

Careful interpretation of the generated data is
needed. A major challenge of linking transcriptomic
data to gene function is that data can be noisy due
to random interactions among genes, their products,
and environmental factors. The existence of segregat-
ing gene variants might not necessarily be manifested
as differential gene expression in a transcriptomic study,
and differential gene expression may not be detected in
studies of genetic diversity. Redundancy in genetic path-
ways poses another challenge, as multiple genes can
compensate for each other’s functions (Generalovic et
al., 2025b). Finally, gene variants and differential gene
expression with critical effects in specialised tissues
or developmental stages might easily be overlooked in
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whole body extractions of single stages (Oppert et al.,
2023; Scieuzo et al., 2021).

Fully dissecting the functional impact of genotypes
on phenotypes necessiates a wider look at multiple
tiers of biological organisation. Integrating transcrip-
tomic data with other ‘omics’ — such as proteomics,
metabolomics, and epigenomic scans — helps construct-
ing a comprehensive view of gene functions (Gallagher
and Chen-Plotkin, 2018; Maji and Garg, 2013). The num-
ber of proteomics studies in BSF has increased (e.g.
Bose et al., 2023; Lu et al., 2021; Rabani et al., 2019).
Other studies propose or apply a systems genomics
approach with the integration of various multi-omics
data (Aagaard et al., 2022; Kadarmideen, 2014; Surava-
jhala et al.,, 2016). Next to successful studies (Lecheta
et al, 2020), in some cases the integration of data
across levels of biological organisation does not pro-
vide clear functional answers (Malmendal et al., 2013).
Enzyme concentration does not necessarily predict
enzyme activity, and resulting metabolites (collectively
the metabolome) is complex in function and devoid
of info on the dynamics. Accordingly, the decrease
of a metabolite under certain conditions can signify
decreased production (less need) or increased con-
sumption (more need). As such, no change (at any level)
could cover a range of vastly different conditions with
different biological consequences but is unlikely to be
detected.

Linking gene expression changes directly, e.g. to
a response to a stressor relative to wider mechanis-
tic consequence of the treatment can be challeng-
ing. For example, while high fold change induction
of heat shock proteins correlates well with exposure
to increased temperature, causal interpretation is less
obvious. Gene expression up-regulation could reflect
capability to accommodate stress, or that the organism
is severely stressed and barely able to withstand (Morfin
et al., 2023; Serensen, 2010). Finally, though tempting,
equating fold changes with biological significance is
not necessarily meaningful, as modest regulation of key
genes could have huge effects.

To be expressed, a coding region must be accessible
for transcription. Epigenetic processes modulate gene
expression, with phenotypic consequences. These mod-
ifications can be genetically controlled or induced by
the environment; for instance, DNA methylation pat-
terns in the house cricket upon exposure to graphene
oxide results in multigenerational oxidative stress (Flasz
etal., 2023a,b). Polyurethane foam-feeding yellow meal-
worm results in stage-specific changes in mitochondrial
DNA methylation patterns associated with decreased
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ATP synthesis (Guo et al, 2019). Further, leg regener-
ation in Mediterranean field crickets is epigenetically
regulated by histone H3K27 methylation (Hamada et al.,
2015). Silkworms have exhibited increased DNA methy-
lation during domestication and reduced hatchability
when a DNA methyltransferase (Dnmtl) is knocked
down suggests important adaption to managed environ-
ments (Xiang et al., 2013). Epigenetic profiling studies
in insects identified increased expression of epigenetic
modification enzymes in the reproductive organs of
domesticated silkworm populations (Gao et al., 2020)
and the role of epigenetic control of growth in the
red flour beetle (George et al, 2019). Given the sup-
posed high relevance particularly in production insects
(Mukherjee and Vilcinskas, 2019), further investigations
into the epigenome of the core insects as food and feed
species will develop our understanding of the high phe-
notypic plasticity observed (de Carvalho, 2023) that
is rarely directly ascribable to DNA sequence varia-
tion (Glastad et al., 2019). Epigenetics and methylation
studies through whole genome bisulphite sequencing
(commonly used to detect DNA modification), are still
relatively scarce in insects, except for social insects
(Adusumalli et al., 2015; Yagound et al., 2020). Generally
being lower than in mammals, levels of cytosine methy-
lation vary substantially across arthropods, and Dipter-
ans (e.g. BSF) seem to have lost this main methylation
mechanism, suggesting other mechanisms operate in
this order (Bewick et al.,, 2017). In a breeding context, to
mitigate unwanted ‘maternal’ effects, e.g. in G x E stud-
ies, it is recommended to rear experimental populations
under equal conditions for multiple generations prior to
the trial (Sandrock et al., 2022).

Bioinformatic prediction of function

Several bioinformatic tools can improve our under-
standing of candidate gene roles and assist experimen-
tal verification of gene functions. Functional interpreta-
tion of candidate genes can be restricted by poor anno-
tations. Gene functions can be predicted by comparison
to genes of interest with known sequences in databases
(e.g. BLAST). Numerous specialised databases are avail-
able to support insect genomics research. For example,
the Insect Cytochrome P450 Database contains 66 513
P450 genes from more than 680 insect species serving as
a comprehensive resource for predicting gene function
and aiding to understand their evolution in insects (Wu
et al., 2024). Other resources include the CAZy (Cantarel
et al., 2009) and iCAZyGFADB databases which inte-
grate multiple annotation tools for genomic and tran-
scriptomic data to identify carbohydrate active enzymes
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(Fu and Yang, 2023), the InsectBase 2.0 which provides
data on more than 800 insect genome and 25 000 tran-
scriptomes covering more than a million of annotated
genes (Mei et al, 2021), and the AlphaFold prediction
tool for protein structure and function (Jumper et al.,
2021). Generally, the integration of multiple databases
can enhance accuracy of prediction (Marques de Castro
et al., 2022; Shim et al., 2017), yet bioinformatics-based
prediction has limitations: databases capture only pub-
licly available information. Even though a lack of func-
tional evidence in databases does not necessarily mean
a computational prediction is incorrect, it necessitates
further “wet” functional genomics studies to charac-
terise gene activity and possible roles in cellular pro-
cesses (Kikuchi et al., 2017; Urzta-Traslavifa et al., 2021).

Functional characterisation of candidate loci

The ultimate goal is to experimentally verify the effect
of a particular gene or genetic variant on function. One
approach is RNAi, which exploits a naturally occurring
biological process wherein small RNA molecules inhibit
protein expression by neutralising targeted mRNA.
Researchers can leverage this molecular machinery to
knock down genes of interest and gain insight into their
function (Bellés, 2010). RNAi was utilised to explore
metallothionein genes in BSF larvae, potentially respon-
sible for metabolising cadmium, to better understand
mechanisms relevant for bioremediation (Zhang et
al., 2021). By systematically silencing three of these
genes upon cadmium-exposure, knock out of one gene
(BSFMT2B) decreased larval weight and increased mor-
tality, suggesting its role in cadmium detoxification and
tolerance.

In addition to RNAi, CRISPR/Cas9 technology has
been widely used in insect functional genomics (Shi-
rai et al, 2022), including the vinegar fly (Bier et al.,
2018; Sun et al., 2015), the fall armyworm, Spodoptera
frugiperda (Wang et al., 2024), and the Mediterranean
field cricket (Matsuoka et al, 2024). The technology
enables targeted mutagenesis and can be used to pre-
cisely knock out a gene to understand its function
(Hillary and Ceasar, 2024). It has also been used to
insert a reporter gene into specific loci enabling visuali-
sation of expression patterns (Lo and Matthews, 2023).
CRISPR gene editing has been successfully carried out in
BSF, yellow mealworm, and various cricket species (Bai
et al., 2023; Chen et al., 2023; Deng et al., 2023; Dossey
et al., 2023; Extavour et al., 2019; Gunther et al., 2024;
Inoue et al., 2023; Nakamura et al., 2022; Oppert et al,,
2023; Sui et al., 2024; Zhan et al., 2020). One applica-
tion of this technology, in both research and breeding
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efforts, are visible marker genes, e.g. affecting pigmen-
tation. Easily observable traits can be linked to genes
of interest to track genetic modifications and breeding
outcomes. To date, two genetic markers have been inves-
tigated in BSF: mutations in members of the yellow gene
family resulting in a pale-yellow phenotype (Dong et al.,
2024) and heritable mutation of the white gene, com-
monly used as a marker in other insect models, resulting
in a white-eye phenotype in larvae and adults (Sui et al.,
2024).

Prior to CRISPR, most genetic modification involved
insertion of genetic constructs into random genomic
locations. A common approach is to use the piggy-
BAC vector to insert a gene of interest with a promo-
tor sequence, and commonly also a marker such as
GFP. Recent work has established a system for over
expression of target genes in BSF (Kou et al, 2023).
Various overexpression systems have been reported and
include viral transduction systems such as the Anophe-
les gambiae densovirus (AgDNV), which allowed high
gene expression levels in the major malaria mosquito
(Suzuki et al., 2014). In the vinegar fly, overexpression
of targeted genes can also be achieved using the GAL4-
UAS system: female flies carry the gene of interest under
the UAS (Upstream Activation Sequence) promoter and
are crossed with males expressing the GAL4 transcrip-
tion factor. GAL4 binds specifically to the UAS which
acts as a promoter only in the presence of GAL4 leading
to the overexpression of the targeted gene (Brand and
Perrimon, 1993; Dufty, 2002). The system does not only
allow the over-expression of D. melanoagster genes but
has also been used to express human genes in the vine-
gar fly model (Ma et al., 2003).

Animals generally tolerate genome changes much
less than plants, and there is a risk that downreg-
ulating or knocking out a gene will result in infe-
rior performance, due to the manipulation making
the organism generally weaker rather than the gene
being directly related to a phenotype in question.
Approaches to accommodate this problem include
knock-down/knock-out of additionally randomly se-
lected genes, screening additional non-targeted pheno-
types, or showing that the phenotype can be improved
by over-expression. Ultimately, compared to easier
knockout experiments, using knock-ins to replace nat-
ural variants and investigate their effect on the pheno-
type are biologically more meaningful. Gene editing aids
characterising functional causalities to inform selective
breeding on causal genes or even natural variants rele-
vant for variation in specific production traits. However,
natural gene variants could also be uniquely altered or
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interchanged depending on genetic architectures and
population genetic background, respectively. In this lat-
ter case, genetic modification can represent a form of
genetic improvement, synonymous to the goal in classi-
cal breeding.

The challenge of high throughput phenotyping

Both initial QTL/GWAS screens and subsequent pheno-
typing of functional experiments such as gene knock-
outs rely on statistical associations between pheno-
type and genotype. One challenge is to obtain large
samples of phenotyped individuals required. In insect
breeding research, the generation of fast, precise, and
high-throughput phenotyping is the major bottleneck
in experimental and commercial workflows, in com-
parison to obtaining high quality genome sequence
data, which is now relatively straightforward. Technical
developments allowing high throughput phenotyping
approaches are especially needed for quantitative traits,
where numerous genes are involved and large samples
are needed to identify associations with phenotypes,
especially for traits that are expressed differently in dif-
ferent contexts (Houle et al., 2010).

However, promising research in phenomics in other
high density and high-throughput animal production
systems, like aquaculture, might inspire solutions for
insect farming (e.g. Freitas et al., 2023; Fu and Yuna,
2022). High-throughput phenotyping in insect models
has been demonstrated (Hansen et al., 2024a; Laursen
et al, 2021; MacLean et al., 2022). Population-level
studies frequently reveal a complex array of gene-
environment interactions. These interactions can differ
significantly among various populations, across differ-
ent developmental stages, and within distinct tissue
types of the same species (Houle et al., 2010). Investi-
gating population-level variations often uncovers com-
plex patterns where numerous genes interact with envi-
ronmental factors to influence phenotypic outcomes
(Wilson et al, 2003). In insects, these complex inter-
actions are further confounded by species reproductive
behaviour and life history traits that make insect pop-
ulations highly dynamic and often subject to chance
demographic shifts (see Section 3: Evolutionary forces)
over temporal and spatial scales, that can quickly alter
the genetic background of a population (Hull et al,
2024; Kaya et al., 2021; Rhode et al., 2020).

Taken together, complementary work on model in-
sect species will be largely transferable and should
inform future efforts. Nevertheless, particularly in a
breeding context, awareness on presumably widespread
highly population-specific responses as well as respec-
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tive developmental and environmental interactions is
crucial. Generation of sequences and other massive
‘omics’ datasets is no longer the bottleneck, while com-
petences and resources for analyses and accurate phe-
notyping increasingly are.

6 Discussion

The study of genetics of insects farmed for food and
feed is a recent research discipline. While it is rapidly
expanding with dedicated societies, conferences, jour-
nals, and an increasing number of papers, there is still
much to be learned. The development of the research
area builds on well-established traditions in, on the
one hand, quantitative genetics and breeding of domes-
tic animals and, on the other hand, experimental and
fundamental genetic research on model insect species.
However, insects are an evolutionarily old and function-
ally diverse group, with major orders, such as Coleoptera
(beetles) and Diptera (flies and mosquitoes), having
several hundred million years of independent evolu-
tion. Two important consequences arise from this. First,
insects show diverse biological characteristics that dif-
fer in many aspects from traditional livestock (e.g. cows,
pigs, chicken), which often prevents direct translation
of knowledge. Second, the diversity in insect repro-
ductive systems and life-histories means that extrapo-
lation among species demands careful verification. In
this article of the BugBook, we have compiled the cur-
rent knowledge of using genetics to explore evolution-
ary histories, analyse contextual population genetic pat-
terns and functional impacts, and inform the manage-
ment and selective breeding of farmed insects. This goal
is what conceptually unites the four thematic sections
on genetic research and their differentiated approaches
and analyses outlined above.

Insect biology

Insects are small, have short generation times, pro-
duce numerous progenies, and are ectotherms, all of
which separates them from most traditional livestock.
In addition to fundamental developmental differences
between holo- and hemimetabolous insects, their var-
ious natural ecological niches imply that they have
evolved a wide range of adaptations to thrive, includ-
ing specific behaviour and cognitive abilities. Farming
management practices thus need to account for these
adaptations in a welfare context. The diverse biologi-
cal features of insects produced for food and feed come
with specific challenges. Insect researchers and breeders
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should thus aim to acquire in-depth knowledge on their
physiology, metabolism, health, behaviour, and repro-
ductive biology, and methods tailored for the species in
question to enable genetic improvement through appli-
cation of molecular genetics methods. Examples of key
genetic information needed for effective insect man-
agement and breeding includes assessing population
structure and evolutionary history, unveiling G x E inter-
actions and which and how genes regulate the main
production traits, identifying key immune system com-
ponents and functions to prevent and combat infections
and diseases, and resolving sex determination with the
aim of manipulating population sex ratios. Research on
genetics and fundamental biology are thus interdepen-
dent, and basic knowledge is still scarce for most pro-
duction species, hence advancements in both domains
are essential for progress in the field of insect breeding.

Genetic basis of production traits

Although many production traits are related to Dar-
winian fitness, not all evolutionarily relevant life-history
traits are important in commercial production settings.
This means that insights into the genetic basis of insect
life-history traits obtained from fundamental research
on insect models may only be partially transferable to
production insects. Hence, the focus should be placed
more on fundamental research on genetic regulation of
commercially relevant traits. Study designs aiming to
unravel the relationship between genotypes and phe-
notypes (the genotype-to-phenotype map) are recom-
mended. Most traits of interest of farmed insects are
related to their efficient production, such as simulta-
neous maximisation of growth and minimisation of
food intake and development time. Similar to optimised
feed conversion efficiency, many production traits are
expected to be shaped by a complex interplay of fac-
tors that trigger numerous molecular pathways, and
thus to be polygenic. Investigating such composite traits
requires description of the trait components, includ-
ing functional characterisation of involved organs and
tissue, and applying quantitative genetic and genomic
approaches to identify underlying trait architecture and
regulatory networks of the involved genes. We encour-
age the community to take advantage of the many
opportunities for generating large amounts of data,
enabled by the technological advances, to make signif-
icant progress in elucidating the genetic basis of pro-
duction traits. Further, consulting extensive research on
several model insect species is advised to continuously
complement our knowledge and inform future efforts.
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Measuring phenotypes

Measuring phenotypes is a crucial aspect of farming
insects and an important component of any selective
breeding programme. It is not only a form of quality
control or assessment of phenotypic progress but can
also aid management by alerting on any potential prob-
lems in the production facilities. A hallmark of insect
life cycles are the transitions between vastly different
developmental stages, which require species-specific as
well as stage-specific phenotyping methods. For exam-
ple, flies and beetles are mostly harvested in their lar-
val stage, whereas crickets and grasshoppers are reared
through their juvenile nymphal stages until adulthood
for harvest. Although measuring individual phenotypes
of insects in large numbers and over time remains a
challenge, we will benefit from using novel automated,
sensor-based, and Al-assisted methods currently being
developed to generate large and informative datasets in
short time. In research or production settings, efforts
should be made to obtain accurate trait measures to
enable identification of genetic basis of production
traits, provide insights into functional genetic correla-
tions between traits, and ultimately inform breeding
to ensures genetic progress. To improve breeding out-
comes, we recommend leveraging species-wide popu-
lation genetic data. Since genetic makeup influences
trait expression and breeding response, focusing only on
current production strains, often with unclear or com-
paratively narrow ancestry, may limit success. Consult-
ing global population genetic inventories can enhance
screening efficiency and reveal a broader range of valu-
able phenotypes.

Environmental effects, interaction with genetics and
selection trade-offs

Given the major role environment plays in insect per-
formance, not only control of its various relevant com-
ponents in a production setting is crucial, as covered
in several other dedicated BugBook articles, but also
a profound understanding of how parameters need
to be accounted for to mitigate impairment of effi-
cient selection. Researchers and breeders are urged to
keep environmental effects constant and reproducible
when setting up selection experiments and measur-
ing phenotypes. Another challenge in the field is scale,
since general solutions for translating research find-
ings from small numbers of insects in research labora-
tories to industrial contexts are virtually non-existent.
To bridge the gap and extrapolate breeding progress
from laboratory nucleus populations to production set-
tings, we suggest installing replicate (quasi-)industrial
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facilities serving for experimental research in insect-
breeding. Future approaches should also address the
role and impact of environment- and scale-mediated
epigenetic effects involved in plasticity responses of the
various commercially farmed insects. Overlooking puta-
tively important transgenerational non-additive genetic
drivers could seriously hamper breeding progress.

Likewise, there is still a lot to be learned about
the role of the environment in interaction with the
genetics of insects for food and feed, which may in
fact entail multiple levels of interactions, e.g. includ-
ing microbiota possibly influenced by both diet and
insect genetic background (Greenwood et al., 2021; Sil-
varaju et al., 2024). Optimising production tailored at
market demands requires in-depth explorations of G x
E interactions and their causal mechanisms. To ensure
this, we champion the generation of in-depth knowl-
edge on species-wide population structure, as well as
on the evolutionary drivers underlying species-specific
population genetic stratification. In some applied pro-
duction contexts, selecting strains for maximising per-
formance on a specific diet and otherwise constant con-
ditions will increase economic revenue. Conversely, in
settings that cannot be fully controlled or deliberately
seek variable dietary substrates, generalist strains may
outperform specialists, and/or allow less variable and
thus more steady and predictable performance across
a range of conditions. We stress that G x E interac-
tions must be considered in breeding schemes tailored
to industrial settings. Ignoring potential interactions
can lead to important divergences from the expected
results in the farm. In one scenario, the nucleus, centre
of genetic improvement, must provide the multiplier
and, ultimately, the production farm with genetically
improved material. With the aim of increasing effi-
ciency of the nucleus, the actual breeding environment
is generally, although not advisably so, more favourable
and/or controlled than the production site (control of
abiotic conditions, diet quality, feeding regime, rearing
density, pathogens and other stressors). For instance,
with nucleus selection for improved conversion effi-
ciency on concentrate feed, comparable trait gains are
unlikely to be transferred to production settings using
poor diets. Dedicated research is therefore needed to
explore the transferability of genetic improvement to
ensure selective breeding does not bypass actually deci-
sive parameters, ultimately compromising long-term
output of global farms.

Moreover, selective breeding is not an isolated pro-
cess, where traits can be improved independently.
Improvement in one specific trait leads to correlated
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responses in others, either positive or negative, result-
ing in trade-offs. Both positive and negative correlations
can be considered neutral, favourable, or unfavourable,
depending on the context and may require adjusted
management or product processing. For instance, re-
duced adult longevity with equal reproductive output
upon increased larval biomass might be acceptable
when larval protein is the production target, making
this a negative, neutral correlation. Other trade-offs
may unfavourably affect yield and need to be identified
and carefully evaluated. A positive unfavourable corre-
lation is exemplified when higher nitrogen conversion
efficiency increases both larval growth and relative fat
contents — population level fitness will likely increase,
but aggravated lipid extraction may substantially affect
product quality. Another potentially unfavourable cor-
relation might result from selecting for increased anti-
microbial peptide production in insects, which could be
a boon for livestock feeding (Xia et al., 2021). However,
resource costly insect immune responses may com-
promise growth and population fitness (Joosten et al.,
2020), and affect public perception on welfare aspects
(Kortsmit et al., 2023).

Genetic monitoring and management of breeding
populations

To improve and optimise insect breeding programmes
and genetic management of populations, we emphasise
genetic research shall also focus on unveiling genetic
structure and thus relationships between subpopula-
tions. Many of the genetic marker techniques developed
for other organisms can readily be applied to quan-
tify and monitor genetic variation in insects produced
for food and feed. So far, much work has concentrated
on a few species and populations/stocks. Based on
improved insights into species-wide population strati-
fication, future studies should ideally include a much
wider selection of differentiated source populations to
capture the true genetic scope of each species. The
choice of methodology, sampling, and design should
be tailored towards the goal of the application, and
techniques and protocols should be developed and val-
idated for the species and the aim in question. This
calls for developing protocols for non-destructive geno-
typing of breeding candidates without compromising
performance or reproductive success. Targeted genetic
management, comparable to conventional livestock,
requires a deep understanding of the evolutionary pat-
terns, and ecological and demographic factors shaping
population genetic structure across hierarchical levels,
including wild populations and managed stocks. We
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opine that exploiting the genetic potential of a species
as a whole is pivotal for a better understanding of
genome-wide signatures of insect domestication and
phenotypic consequences in a production context.

Data sharing

We encourage increasing transparency and data shar-
ing through publications to advance the field and cre-
ate long-term benefits for all breeders and the entire
insect production industry. Further, future studies on
the various non-genetic research disciplines related to
insects as food and feed are urged to report basic geno-
typing data by applying available low-tech/cost genetic
markers to help generating useful metadata. Specifi-
cally, reckoning that insect genetics has the potential
to influence product quality up to performance at the
next trophic level (see Sandrock et al., 2022), continuing
to ignore possible interactions between insect genet-
ics and production parameters as well as product pro-
cessing and/or features could turn out as a veritable
shortcoming for the sector. In addition, the field would
benefit from more openness on the research of genet-
ics of farmed insects, for example by breeding compa-
nies. Technological advances in genetic analyses provide
much opportunity for improving breeding programmes.
Sharing experiences on shaping the research question
and collecting and analysing phenotyping and genotype
data will increase the likelihood of success. We recom-
mend collaborative initiatives and coordinated interna-
tional consortium efforts that will allow more ambitious
research programmes, including larger scales (insect
numbers), and enable tackling some of the major chal-
lenges to advance the field.

7 Conclusion

Despite the challenges discussed in this article, much
progress has been achieved in the genetics of insects for
food and feed. We believe that there is great promise
for the continued development and improvement of
research in this field. However, we also need to learn
from the past in order to efficiently make progress. The
advancement of technology not only pushed the bound-
aries of what can be achieved on model and non-model
species but also changed the typical research bottleneck
from generating genetic/genomic data to their analy-
sis and providing accurate phenotypes associated with
the genetic variation. Main challenges for the future
include validating findings in small scale studies when
upscaled to mass production conditions, assessing and
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controlling the effect of environmental conditions and
its interaction with genetics (and identifying the impor-
tant drivers), characterising and exploiting beneficial
genetic variation for trait optimisation, and balancing
genetic improvement with inbreeding and maintaining
genetic variation and robustness of cultures. Another
point of focus is the huge differences among species
(in life history, population structure, and evolutionary
history) that can affect the outcome of applying vari-
ous techniques and approaches. Importantly, claiming
that the insect sector has understood how to avoid mis-
takes that were made in conventional livestock breeding
deserves a responsible debate on controversial aspects
like genome editing and insect welfare. Similarly, high-
lighting sustainability improvement as the sector’s basic
motivation deserves dedicated biodiversity considera-
tions, which could range from protecting wild genetic
resources from excessive intra-specific introgression to
monitoring threats to ecosystems through inter-specific
pathogen spillover or invasion potentials. Another ver-
itable challenge is that a lot of knowledge, experience,
and know-how exists among the many people work-
ing with insect for food and feed, however, much of
this expertise is not published and thus not available
for the broader research and industry communities. As
a final note, we would like to mention that while the
genetic improvement of farmed insects is still in its
infancy, barely entering the domestication phase, genet-
ics research and systematic breeding is undoubtedly the
most powerful tool to further accelerate the transition to
circular agriculture supported by insects. By unlocking
their genetic potential, it is possible to enhance produc-
tivity, sustainability, and adaptability in insect farming.
This represents a key opportunity to address global chal-
lenges in food security and environmental conservation,
and there is an enormous amount of untapped insect
diversity that may be exploited for food and feed pro-
duction in the future.
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Data is available on https://doi.org/10.1163/23524588
-bjal0260 under Supplementary Materials.
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